Toggle light / dark theme

Advancements in 3D printing have made it easier for designers and engineers to customize projects, create physical prototypes at different scales, and produce structures that can’t be made with more traditional manufacturing techniques. But the technology still faces limitations—the process is slow and requires specific materials which, for the most part, must be used one at a time.

Researchers at Stanford have developed a method of 3D printing that promises to create prints faster, using multiple types of in a single object. Their design, published recently in Science Advances, is 5 to 10 times faster than the quickest high-resolution printing method currently available and could potentially allow researchers to use thicker resins with better mechanical and .

“This new technology will help to fully realize the potential of 3D printing,” says Joseph DeSimone, the Sanjiv Sam Gambhir Professor in Translational Medicine and professor of radiology and of chemical engineering at Stanford and corresponding author on the paper. “It will allow us to print much faster, helping to usher in a new era of digital manufacturing, as well as to enable the fabrication of complex, multi-material objects in a single step.”

The concept of “symmetry” is essential to fundamental physics: a crucial element in everything from subatomic particles to macroscopic crystals. Accordingly, a lack of symmetry—or asymmetry—can drastically affect the properties of a given system.

Qubits, the quantum analog of computer bits for quantum computers, are extremely sensitive—the barest disturbance in a qubit system is enough for it to lose any it might have carried. Given this fragility, it seems intuitive that would be most stable in a symmetric environment. However, for a certain type of qubit—a molecular qubit—the opposite is true.

Researchers from the University of Chicago’s Pritzker School of Molecular Engineering (PME), the University of Glasgow, and the Massachusetts Institute of Technology have found that molecular qubits are much more stable in an asymmetric environment, expanding the possible applications of such qubits, especially as biological quantum sensors.

I’ve finally finished my gauss rifle! This is about four months in the making. I may improve on it in the future, or build an entirely new and better one! But I want to take a break from coil guns for a while.

Disclaimer:
I’d consider myself to be a pacifist, and don’t intend to use this on any person or animal. This project has merely acted as an outlet for my interest in electronics and electromagnetism. My aim has also been to create something cool to get others interested in science and engineering.

Coil Gun Design Guide:
https://docs.google.com/document/d/1QH2dbDUKwIGOhsAcvSpi7IVG…sp=sharing.

Circuit Schematic:

The brain is an extremely complex organ whose exact functioning remains difficult to understand. On average, the human brain contains 100 billion neurons that fire upon receiving input signals from multiple sensory organs. But, what is truly remarkable about our brain is the synchronization of this neural firing when triggered by a common input. Put simply, common inputs can generate a collective response in neurons that are not only spatially separated but also have different firing characteristics.

The neural synchronization has been observed before in experiments, and is commonly demonstrated during rest and activities involving tasks. However, the common inputs which produce this are typically unknown in real-world situations. This raises an interesting question: is it possible to reconstruct this input by looking at the output of the ?

In a new study published in Physical Review E on September 12, 2022, a team of researchers from Japan, led by Professor Tohru Ikeguchi from Tokyo University of Science (TUS), set out to answer this question. The team, including Associate Professor Ryota Nomura of Waseda University (formerly TUS), and Associate Professor Kantaro Fujiwara of The University of Tokyo, looked at the firing rates of neurons and managed to reconstruct the using a method called “superposed recurrence plot” (SRP).

Today’s launch by Rocket Lab, “The Owl Spreads Its Wings,” was as unremarkable as a rocket going to orbit can be, but it also marked a few milestones for the growing space company: 30 launches and 150 satellites taken to space.

The company’s first trip to orbit was in January of 2018, technically Electron’s second test flight but the first successful delivery of a payload to space. That was after more than 10 years of design, engineering and manufacturing since the company was founded in 2006.

It then had an unbroken streak of 18 launches, but on its 20th there was an anomaly and it lost the payload and vehicle. But as founder and CEO Peter Beck told me shortly afterwards, “no more than seconds after we realized that we had an anomaly on our hands, the team was already working it.” And they were clear to fly a month later.

If smoke indicates a fire, nitric oxide signals inflammation. The chemical mediator promotes inflammation, but researchers suspect it can do its job too well after anterior cruciate ligament (ACL) ruptures and related injuries and initiate early onset osteoarthritis. Typically, the degenerative disease is only diagnosed after progressive symptoms, but it potentially could be identified much earlier through nitric oxide monitoring, according to Huanyu “Larry” Cheng, James E. Henderson Jr. Memorial Associate Professor of Engineering Science and Mechanics at Penn State.

Cheng and his student, Shangbin Liu, who earned a master’s degree in engineering science and mechanics at Penn State this year, collaborated with researchers based in China to develop a flexible biosensor capable of continuous and wireless nitric detection in rabbits. They published their approach in the Proceedings of the National Academy of Sciences.

“Real-time assessment of biomarkers associated with inflammation, such as nitric oxide in the joint cavity, could indicate pathological evolution at the initial development of osteoarthritis, providing essential information to optimize therapies following traumatic knee injury,” Cheng said.

Researchers from The University of Texas at Austin and North Carolina State University have discovered, for the first time, a unique property in complex nanostructures that has thus far only been found in simple nanostructures. Additionally, they have unraveled the internal mechanics of the materials that makes this property possible.

In a new paper published this week in the Proceedings of the National Academy of Sciences, the researchers found these properties in oxide-based “nanolattices,” which are tiny, hollow materials, similar in structure to things like sea sponges.

“This has been seen before in simple nanostructures, like a nanowire, which is about 1,000 times thinner than a hair,” said Yong Zhu, a professor in the Department of Mechanical and Aerospace Engineering at NC State, and one of the lead authors on the paper. “But this is the first time we’ve seen it in a 3D .”

So far, Chinese scientists have achieved a reaction running at a slightly cooler 70 million degrees celsius for more than 17 minutes.

China aspires to produce unlimited clean energy through nuclear fusion by 2028.

The “world’s largest” pulsed-power plant will be built in Chengdu, Sichuan province, according to Professor Peng Xianjue of the Chinese Academy of Engineering Physics, The Independent reported on Wednesday.