Toggle light / dark theme

New Tech and National Security Law – 3D Printing

By
Monday, December 2, 2013 at 7:00 AM

For those who haven’t been following along, this recent story about 3D printing of plastic guns should be a revelation. 3D printing is one of those technologies where the reality is fast outrunning our imagination. It is, in essence, the ability to construct a product from feedstock using a readily available “printer” linked to a computer where the source code for the product is executed. According the Washington Post’s story, the new plastic guns are capable of firing lethal rounds and, naturally, they are beyond the detection of metal detectors.

But for every “parade of horrible story” about 3D printing there’s also one of great promise. For example, NASA recently announced plans to send a 3D printer to the space station. This development, combined with the development of printing for metal objects (from liquid metal feedstock) means that many of our concepts of logistics will go out the window. If a manufacturer can construct metal parts from an easily transported feed stock then, as Andrew Filo, a consultant with NASA on the 3D space station printing project, said: “You can get rid of concepts like rationing, scarce or irreplaceable.” That’s a truly extraordinary development.

Read More

GE Turns to 3D Printers for Plane Parts

The GE90 is one of the world’s most powerful jet engines. GE plans to produce 100,000 3D-printed components for the next-generation GE9X and Leap models

General Electric (GE), on the hunt for ways to build more than 85,000 fuel nozzles for its new Leap jet engines, is making a big investment in 3D printing. Usually the nozzles are assembled from 20 different parts. Also known as additive manufacturing, 3D printing can create the units in one metal piece, through a successive layering of materials. The process is more efficient and can be used to create designs that can’t be made using traditional techniques, GE says. The finished product is stronger and lighter than those made on the assembly line and can withstand the extreme temperatures (up to 2,400F) inside an engine. There’s just one problem: Today’s industrial 3D printers don’t have enough capacity to handle GE’s production needs, which require faster, higher-quality output at a lower cost.

Continue Reading

Military–Industrial Complex Supermanagement!

EXCERPT

To further underpin this statement, I will share Peter Drucker’s quote, “…The greatest danger in times of turbulence is not the turbulence; it is to act with yesterday’s logic…” And also that of Dr. Stephen Covey, “…Again, yesterday holds tomorrow hostage .… Memory is past. It is finite. Vision is future. It is infinite. Vision is greater than history…” And that of Sir Francis Bacon, “… He that will not apply new remedies must expect new evils, for time is the greatest innovator …”

And that of London Business School Professor Gary Hamel, PhD., “…You cannot get to a new place with an old map…” And that of Alvin Toffler, “…The future always comes too fast and in the wrong order…”

View the entire presentation at http://lnkd.in/dP2PmCP

Supermanagement!

Supermanagement! by Mr. Andres Agostini (Excerpt)

“…What distinguishes our age from every other is not the world-flattening impact of communications, not the economic ascendance of China and India, not the degradation of our climate, and not the resurgence of ancient religious animosities. Rather, it is a frantically accelerating pace of change…”

Read the entire piece at http://lnkd.in/bYP2nDC

The Disruptional Singularity

(Excerpt)

Beyond the managerial challenges (downside risks) presented by the exponential technologies as it is understood in the Technological Singularity and its inherent futuristic forces impacting the present and the future now, there are also some grave global risks that many forms of management have to tackle with immediately.

These grave global risks have nothing to do with advanced science or technology. Many of these hazards stem from nature and some are, as well, man made.

For instance, these grave global risks ─ embodying the Disruptional Singularity ─ are geological, climatological, political, geopolitical, demographic, social, economic, financial, legal and environmental, among others. The Disruptional Singularity’s major risks are gravely threatening us right now, not later.

Read the full document at http://lnkd.in/bYP2nDC

The Future of Scientific Management, Today!

The Future of Scientific Management, Today! (Excerpt)


Andres Agostini was asked this question:

Mr. David Shaw’s question, “…Andres, from your work on the future which management skills need to be developed? Classically the management role is about planning, organizing, leading and controlling. With the changes coming in the future what’s your view on how this management mix needs to change and adapt?…” Question was posited on an Internet Forum, formulated by Mr. David Shaw (Peterborough, United Kingdom) on October 09, 2013.

This is an excerpt from, “…The Future of Scientific Management, Today…” that discusses state-of-the-art management theories and practices. To read the entire piece, just click the link at the end of article.

CONCLUSION

In addition to being aware and adaptable and resilient before the driving forces reshaping the current present and the as-of-now future, THERE ARE SOME EXTRA MANAGEMENT SUGGESTIONS THAT I CONCURRENTLY PRACTICE:

1.- Given the vast amount of insidious risks, futures, challenges, principles, processes, contents, practices, tools, techniques, benefits and opportunities, there needs to be a full-bodied practical and applicable methodology (methodologies are utilized and implemented to solve complex problems and to facilitate the decision-making and anticipatory process).

The manager must always address issues with a Panoramic View and must also exercise the envisioning of both the Whole and the Granularity of Details, along with the embedded (corresponding) interrelationships and dynamics (that is, [i] interrelationships and dynamics of the subtle, [ii] interrelationships and dynamics of the overt and [iii] interrelationships and dynamics of the covert).

Both dynamic complexity and detail complexity, along with fuzzy logic, must be pervasively considered, as well.

To this end, it is wisely argued, …You can’t understand the knot without understanding the strands, but in the future, the strands need not remain tied up in the same way as they are today…”

For instance, disparate skills, talents, dexterities and expertise won’t suffice ever. A cohesive and congruent, yet proven methodology (see the one above) must be optimally implemented.

Subsequently, the Chinese proverb indicates, …Don’t look at the waves but the currents underneath…”

2.- One must always be futurewise and technologically fluent. Don’t fight these extreme forces, just use them! One must use counter-intuitiveness (geometrically non-linearly so), insight, hindsight, foresight and far-sight in every day of the present and future (all of this in the most staggeringly exponential mode). To shed some light, I will share two quotes.

The Panchatantra (body of Eastern philosophical knowledge) establishes, …Knowledge is the true organ of sight, not the eyes.…” And Antonio Machado argues, … An eye is not an eye because you see it; an eye is an eye because it sees you …”

Managers always need a clear, knowledgeable vision. Did you already connect the dots stemming from the Panchatantra and Machado? Did you already integrate those dots into your big-picture vista?

As side effect, British Prime Minister W. E. Gladstone considered, …You cannot fight against the future…”

THE METHOD

3.- In all the Manager does, he / she must observe and apply, at all times, a sine qua non maxim, …everything is related to everything else…”

4.- Always manage as if it were a “project.” Use, at all times, the “…Project Management…” approach.

5.- Always use the systems methodology with the applied omniscience perspective.

In this case, David, I mean to assert: The term “Science” equates to about a 90% of “…Exact Sciences…” and to about 10% of “…Social Sciences…” All science must be instituted with the engineering view.

6.- Always institute beyond-insurance risk management as you boldly integrate it with your futuring skill / expertise.

7.- In my firmest opinion, the following must be complied this way (verbatim): the corporate strategic planning and execution (performing) are a function of a grander application of beyond-insurance risk management.It will never work well the other way around. TAIRM is the optimal mode to do advanced strategic planning and execution (performing).

TAIRM (Transformative and Integrative Risk Management) is not only focused on terminating, mitigating and modulating risks (expenses of treasure and losses of life), but also concentrated on bringing under control fiscally-sound, sustainable organizations and initiatives.

TAIRM underpins sensible business prosperity and sustainable growth and progress.

8.- I also believe that we must pragmatically apply the scientific method in all we manage to the best of our capacities.

If we are “…MANAGERS…” in a Knowledge Economy and Knowledge Era (not a knowledge-driven eon because of superficial and hollow caprices of the follies and simpletons), we must do therefore extensive and intensive learning and un-learning for Life if we want to succeed and be sustainable.

As a consequence, Dr. Noel M. Tichy, PhD. argues, …Today, intellectual assets trump physical assets in nearly every industry…”

Consequently, Alvin Toffler indicates, …In the world of the future, THE NEW ILLITERATE WILL BE THE PERSON WHO HAS NOT LEARNED TO LEARN…”

We don’t need to be scientists to learn some basic principles of advanced science.

EFFORT

Accordingly, Dr. Carl Sagan, PhD. expressed, …We live in a society exquisitely dependent on science and technology, in which hardly anyone knows about science and technology…” And Edward Teller stated,…The science of today is the technology of tomorrow …”

And it is also crucial this quotation by Winston Churchill, …If we are to bring the broad masses of the people in every land to the table of abundance, IT CAN ONLY BE BY THE TIRELESS IMPROVEMENT OF ALL OF OUR MEANS OF TECHNICAL PRODUCTION…”

9.- In any management undertaking, and given the universal volatility and rampant and uninterrupted rate of change, one must think and operate in a fluid womb-to-tomb mode.

The manager must think and operate holistically (both systematically and systemically) at all times.

The manager must also be: i) Multidimensional, ii) Interdisciplinary, iii) Multifaceted, iv) Cross-functional, and v) Multitasking.

That is, the manager must now be an expert state-of-the-art generalist and erudite. ERGO, THIS IS THE NEWEST SPECIALIST AND SPECIALIZATION.

Managers must never manage elements, components or subsystems separately or disparately (that is, they mustn’t ever manage in series).

Managers must always manage all of the entire system at the time (that is, managing in parallel or simultaneously the totality of the whole at once).

10.- In any profession, beginning with management, one must always and cleverly upgrade his / her learning and education until the last exhale.

An African proverb argues, …Tomorrow belongs to the people who prepare for it…” And Winston Churchill established,…The empires of the future are the empires of the mind…” And an ancient Chinese Proverb: …It is not our feet that move us along — it is our minds…”

And Malcolm X observed,…The future belongs to those who prepare for it today…” And Leonard I. Sweet considered, …The future is not something we enter. The future is something we create…”

And finally, James Thomson argued, …Great trials seem to be a necessary preparation for great duties …”

The entire document is available at http://lnkd.in/bYP2nDC

Futurewise Success Tenets

Futurewise Success Tenets

“Futurewise Success Tenets” here is an excerpt from, “The Future of Scientific Management, Today”. To read the entire piece, just click the link at the end of article. As follows:

(1) Picture mentally, radiantly. (2) Draw outside the canvas. (3) Color outside the vectors. (4) Sketch sinuously. (5) Far-sight beyond the mind’s intangible exoskeleton. (6) Abduct indiscernible falsifiable convictions. (7) Reverse-engineering a gene and a bacterium or, better yet, the lucrative genome. (8) Guillotine the over-weighted status quo. (9) Learn how to add up ─ in your own brainy mind ─ colors, dimensions, aromas, encryptions, enigmas, phenomena, geometrical and amorphous in-motion shapes, methods, techniques, codes, written lines, symbols, contexts, locus, venues, semantic terms, magnitudes, longitudes, processes, tweets, “…knowledge-laden…” hunches and omniscient bliss, so forth. (10) Project your wisdom’s wealth onto communities of timeless-connected wikis. (11) Cryogenize the infamous illiterate by own choice and reincarnate ASAP (multiverse teleporting out of a warped / wormed passage) Da Vinci, Bacon, Newton, Goethe, Bonaparte, Edison, Franklyn, Churchill, Einstein, and Feynman. (12) Organize relationships into voluntary associations that are mutually beneficial and accountable for contributing productively to the surrounding community. (13) Practice the central rule of good strategy, which is to know and remain true to your core business and invest for leadership and R&D+Innovation. (14) Kaisen, SixSigma, Lean, LeanSigma, “…Reliability Engineer…” (the latter as solely conceived and developed by Procter & Gamble and Los Alamos National Laboratories) it all unthinkably and thoroughly by recombinant, a là Einstein Gedanke-motorized judgment (that is to say: Einsteinian Gedanke [“…thought experiments…”]. (15) Provide a road-map / blueprint for drastically compressing (‘crashing’) the time’s ‘reticules’ it will take you to get on the top of your tenure, nonetheless of your organizational level. (16) With the required knowledge and relationships embedded in organizations, create support for, and carry out transformational initiatives. (17) Offer a tested pathway for addressing the linked challenges of personal transition and organizational transformation that confront leaders in the first few months in a new tenure. (18) Foster momentum by creating virtuous cycles that build credibility and by avoiding getting caught in vicious cycles that harm credibility. (19) Institute coalitions that translate into swifter organizational adjustments to the inevitable streams of change in personnel and environment. (20) Mobilize and align the overriding energy of many others in your organization, knowing that the “…wisdom of crowds…” is upfront and outright rubbish. (21) Step outside the boundaries of the framework’s system when seeking a problem’s solution. (22) Within zillion tiny bets, raise the ante and capture the documented learning through frenzy execution. (23) “…Moonshine…” and “…Skunks-work…” and “…Re-Imagineering…” all, holding in your mind the motion-picture image that, regardless of the relevance of “…inputs…” and “…outputs,…”, entails that the highest relevance is within the sophistication within the THROUGHPUT.….. (69) Figure out exactly which neurons to make synapses with. (70) Wire up synapses the soonest…”

Read the full material at http://lnkd.in/bYP2nDC

Regards,

Mr. Andres Agostini
www.linkedin.com/in/AndresAgostini

Havens over Hell — Ecosystems of the Venusian Tropopause

In our on-going ambitions to colonise space — and our search for exo-planets in goldilocks zones, it is often overlooked that the most Earth-like area known to us is in our own Solar System, and very nearby — the upper reaches of the Venusian troposphere.

Whilst the surface of Venus invokes classical images of Hell — a dark sea of fire and brimstone, where temperatures raise to an incredible 450°C — hot enough to melt lead, tin and zinc, and pressurised to such an extent (92 bar) that in these conditions the atmosphere ghosts in and out of an ocean of supercritical carbon dioxide — sulphur dioxide tints the air, and sulphuric acid rains down on volcanic plains. One just needs to look to the skies…

At about 50 km to 60 km above the surface, the upper reaches of the Venusian troposphere, the environment is quite different. At these high altitudes the temperature is in our comfort zone of 0°C to 50°C, and the air pressure similar as habitable regions of Earth.

An atmosphere rich in carbon dioxide (96.5%) and abundant solar radiation, the conditions are ideal for photosynthesis. One could imagine solar energy powered crafts could easily sustain ecosystems where the ideal conditions for photosynthesis ensure an abundant source of food and oxygen for inhabitants. The solar energy here is abundant and in all directions — the high reflectivity of clouds below causes the amount of light reflected upward to be nearly the same as that coming in from above, with an upward solar intensity of 90% — so aircraft would not need to concern about electricity or energy consumption. Indeed, that energy would not even be needed to keep the craft airborne — as the oxygen store would also double up as a natural lifting agent for such aircrafts, as in the Venusian atmosphere of carbon dioxide, oxygen is a lifting gas — in the same way helium is a lifting gas on Earth. With temperature, pressure, gravity, and a constant source of food and oxygen via plant growth all accounted for, not to mention close proximity to Earth, waste & water recycling would be the main challenge for the permanence of such Venusian aircraft — where the initial establishment of a balanced ecosystem is key. The engineering challenge would be far less than that of establishing a colony or base on Mars. Just don’t look down!

Quantum Metamaterial and the Feasibility of Invisiblity Cloaks

Meta-materials — materials that have been engineered to have properties that absolutely do not exist in nature — such as negative refraction — are unraveling interesting possibilities in future engineering. The discovery of negative refraction has led to the creation of invisibility cloaks, for example, which seamlessly bend light and other electromagnetic radiation around an object, though such are normally restricted to cumbersome laboratory experiments with split-ring resonators and/or restricted to an insufficient slice of spectrum.

A recent article in ExtremeTech drew attention to the world’s first quantum meta-material, created recently by a team of German material scientists at the Karlsruhe Institute of Technology. It is believed such quantum meta-material can overcome the main problem with traditional meta-materials based on split-ring resonators, which can only be tuned to a small range of frequencies and not conducive to operate across a useful slice of spectrum. While fanciful applications such as quantum birefringence and super-radiant phase transitions are cited it is perhaps invisibility cloaks that until very recently seemed a forte of science fiction.

Breakthroughs at the National Tsing-Hua University in Taiwan have also made great strides in building quantum invisibility cloaks, and as the arXiv blog on TechnologyReview recently commented ‘invisibility cloaks are all the rage these days’. With such breakthroughs, these technologies may soon find mass take-up in future consumer products & security, and also have abundant military uses — where it may find the financial stimulus to advance the technology to its true capabilities. Indeed researchers in China have been looking into how to mass-produce invisibility cloaks from materials such as Teflon. We’ll all be invisible soon.

[1] The first quantum meta-material raises more questions than it answers
http://www.extremetech.com/extreme/168060-the-first-quantum-…it-answers

[2] Quantum Invisibility Cloak Hides Objects from Reality
http://www.technologyreview.com/view/516006/quantum-invisibi…m-reality/

[3] Hide the interior region of core-shell nano-particles with quantum invisible cloaks
http://www.arxiv.org/abs/1306.2120

[4] Chinese Researchers Make An Invisibility Cloak For Mass Production
http://www.technologyreview.com/view/519166/chinese-research…5-minutes/

Peer-to-Peer Science: The Century-Long Challenge to Respond to Fukushima

Peer-to-Peer Science

The Century-Long Challenge to Respond to Fukushima

Emanuel Pastreich (Director)

Layne Hartsell (Research Fellow)

The Asia Institute

More than two years after an earthquake and tsunami wreaked havoc on a Japanese power plant, the Fukushima nuclear disaster is one of the most serious threats to public health in the Asia-Pacific, and the worst case of nuclear contamination the world has ever seen. Radiation continues to leak from the crippled Fukushima Daiichi site into groundwater, threatening to contaminate the entire Pacific Ocean. The cleanup will require an unprecedented global effort.

Initially, the leaked radioactive materials consisted of cesium-137 and 134, and to a lesser degree iodine-131. Of these, the real long-term threat comes from cesium-137, which is easily absorbed into bodily tissue—and its half-life of 30 years means it will be a threat for decades to come. Recent measurements indicate that escaping water also has increasing levels of strontium-90, a far more dangerous radioactive material than cesium. Strontium-90 mimics calcium and is readily absorbed into the bones of humans and animals.

The Tokyo Electric Power Company (TEPCO) recently announced that it lacks the expertise to effectively control the flow of radiation into groundwater and seawater and is seeking help from the Japanese government. TEPCO has proposed setting up a subterranean barrier around the plant by freezing the ground, thereby preventing radioactive water from eventually leaking into the ocean—an approach that has never before been attempted in a case of massive radiation leakage. TEPCO has also proposed erecting additional walls now that the existing wall has been overwhelmed by the approximately 400 tons per day of water flowing into the power plant.

But even if these proposals were to succeed, they would not constitute a long-term solution.

A New Space Race

Solving the Fukushima Daiichi crisis needs to be considered a challenge akin to putting a person on the moon in the 1960s. This complex technological feat will require focused attention and the concentration of tremendous resources over decades. But this time the effort must be international, as the situation potentially puts the health of hundreds of millions at risk. The long-term solution to this crisis deserves at least as much attention from government and industry as do nuclear proliferation, terrorism, the economy, and crime.

To solve the Fukushima Daiichi problem will require enlisting the best and the brightest to come up with a long-term plan to be implemented over the next century. Experts from around the world need to contribute their insights and ideas. They should come from diverse fields—engineering, biology, demographics, agriculture, philosophy, history, art, urban design, and more. They will need to work together at multiple levels to develop a comprehensive assessment of how to rebuild communities, resettle people, control the leakage of radiation, dispose safely of the contaminated water and soil, and contain the radiation. They will also need to find ways to completely dismantle the damaged reactor, although that challenge may require technologies not available until decades from now.

Such a plan will require the development of unprecedented technologies, such as robots that can function in highly radioactive environments. This project might capture the imagination of innovators in the robotics world and give a civilian application to existing military technology. Improved robot technology would prevent the tragic scenes of old people and others volunteering to enter into the reactors at the risk of their own wellbeing.

The Fukushima disaster is a crisis for all of humanity, but it is a crisis that can serve as an opportunity to construct global networks for unprecedented collaboration. Groups or teams aided by sophisticated computer technology can start to break down into workable pieces the immense problems resulting from the ongoing spillage. Then experts can come back with the best recommendations and a concrete plan for action. The effort can draw on the precedents of the Intergovernmental Panel on Climate Change, but it must go far further.

In his book Reinventing Discovery: The New Era of Networked Science, Michael Nielsen describes principles of networked science that can be applied on an unprecedented scale. The breakthroughs that come from this effort can also be used for other long-term programs such as the cleanup of the BP Deepwater Horizon oil spill in the Gulf of Mexico or the global response to climate change. The collaborative research regarding Fukushima should take place on a very large scale, larger than the sequencing of the human genome or the maintenance of the Large Hadron Collider.

Finally, there is an opportunity to entirely reinvent the field of public diplomacy in response to this crisis. Public diplomacy can move from a somewhat ambiguous effort by national governments to repackage their messaging to a serious forum for debate and action on international issues. As public diplomacy matures through the experience of Fukushima, we can devise new strategies for bringing together hundreds of thousands of people around the world to respond to mutual threats. Taking a clue from networked science, public diplomacy could serve as a platform for serious, long-term international collaboration on critical topics such as poverty, renewable energy, and pollution control.

Similarly, this crisis could serve as the impetus to make social networking do what it was supposed to do: help people combine their expertise to solve common problems. Social media could be used not as a means of exchanging photographs of lattes and overfed cats, but rather as an effective means of assessing the accuracy of information, exchanging opinions between experts, forming a general consensus, and enabling civil society to participate directly in governance. With the introduction into the social media platform of adequate peer review—such as that advocated by the Peer-to-Peer Foundation (P2P)—social media can play a central role in addressing the Fukushima crisis and responding to it. As a leader in the P2P movement, Michel Bauwens, suggests in an email, “peers are already converging in their use of knowledge around the world, even in manufacturing at the level of computers, cars, and heavy equipment.”

Here we may find the answer to the Fukushima conundrum: open the problem up to the whole world.

Peer-to-Peer Science

Making Fukushima a global project that seriously engages both experts and common citizens in the millions, or tens of millions, could give some hope to the world after two and a half years of lies, half-truths, and concerted efforts to avoid responsibility on the part of the Japanese government and international institutions. If concerned citizens in all countries were to pore through the data and offer their suggestions online, there could be a new level of transparency in the decision-making process and a flourishing of invaluable insights.

There is no reason why detailed information on radiation emissions and the state of the reactors should not be publicly available in enough detail to satisfy the curiosity of a trained nuclear engineer. If the question of what to do next comes down to the consensus of millions of concerned citizens engaged in trying to solve the problem, we will have a strong alternative to the secrecy that has dominated so far. Could our cooperation on the solution to Fukushima be an imperative to move beyond the existing barriers to our collective intelligence posed by national borders, corporate ownership, and intellectual property concerns?

A project to classify stars throughout the university has demonstrated that if tasks are carefully broken up, it is possible for laypeople to play a critical role in solving technical problems. In the case of Galaxy Zoo, anyone who is interested can qualify to go online and classify different kinds of stars situated in distant galaxies and enter the information into a database. It’s all part of a massive effort to expand our knowledge of the universe, which has been immensely successful and demonstrated that there are aspects of scientific analysis that does not require a Ph.D. In the case of Fukushima, if an ordinary person examines satellite photographs online every day, he or she can become more adept than a professor in identifying unusual flows carrying radioactive materials. There is a massive amount of information that requires analysis related to Fukushima, and at present most of it goes virtually unanalyzed.

An effective response to Fukushima needs to accommodate both general and specific perspectives. It will initially require a careful and sophisticated setting of priorities. We can then set up convergence groups that, aided by advanced computation and careful efforts at multidisciplinary integration, could respond to crises and challenges with great effectiveness. Convergence groups can also serve as a bridge between the expert and the layperson, encouraging a critical continuing education about science and society.

Responding to Fukushima is as much about educating ordinary people about science as it is about gathering together highly paid experts. It is useless for experts to come up with novel solutions if they cannot implement them. But implementation can only come about if the population as a whole has a deeper understanding of the issues. Large-scale networked science efforts that are inclusive will make sure that no segments of society are left out.

If the familiar players (NGOs, central governments, corporations, and financial institutions) are unable to address the unprecedented crises facing humanity, we must find ways to build social networks, not only as a means to come up with innovative concepts, but also to promote and implement the resulting solutions. That process includes pressuring institutions to act. We need to use true innovation to pave the way to an effective application of science and technology to the needs of civil society. There is no better place to start than the Internet and no better topic than the long-term response to the Fukushima disaster.

Originally published in Foreign Policy in Focus on September 3, 2013

/* */