Toggle light / dark theme

A new shape for energy storage: Cone and disc carbon structures offer new pathways for sodium-ion batteries

As global demand for electric vehicles and renewable energy storage surges, so does the need for affordable and sustainable battery technologies. A new study has introduced an innovative solution that could impact electrochemical energy storage technologies.

The research is published in the journal Advanced Functional Materials. The work was led by researchers from the Department of Materials Science and NanoEngineering at Rice University, along with collaborators from Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram.

Using an oil and gas industry’s byproduct, the team worked with uniquely shaped —tiny cones and discs—with a pure graphitic structure. These unusual forms produced via scalable pyrolysis of hydrocarbons could help address a long-standing challenge for anodes in battery research: how to store energy with elements like sodium and potassium, which are far cheaper and more widely available than lithium.

Rapid lithium extraction eliminates use of acid and high heat, scientists report

Lightweight lithium metal is a heavy-hitting critical mineral, serving as the key ingredient in the rechargeable batteries that power phones, laptops, electric vehicles and more. As ubiquitous as lithium is in modern technology, extracting the metal is complex and expensive. A new method, developed by researchers at Penn State and recently granted patent rights, enables high-efficiency lithium extraction—in minutes, not hours—using low temperatures and simple water-based leaching.

“Lithium powers the technologies that define our modern lives—from smartphones to electric vehicles—and has applications in grid energy storage, ceramics, glass, lubricants, and even medical and nuclear technologies,” said Mohammad Rezaee, the Centennial Career Development Professor in Mining Engineering at Penn State, who led the team that published their approach in Chemical Engineering Journal.

“But its extraction must also be environmentally responsible. Our research shows that we can extract lithium, and other , more efficiently while drastically reducing energy use, greenhouse gas emissions and waste that’s difficult to manage or dispose of.”

Molecular engineering approach could boost hydrogen evolution reaction activity by up to 50 times in alkaline media

Electrolyzers are devices that can split water into hydrogen and oxygen using electricity and via a process known as electrolysis. In the future, these devices could help to produce hydrogen gas from water, which is valuable for a wide range of applications and could also be used to power fuel cells and decarbonize energy systems.

At the core of the water electrolysis process are electrochemical reactions known as hydrogen evolution reactions (HERs). In basic (i.e., alkaline) conditions, these reactions tend to be slow, which in turn hinders the performance of electrolyzers.

In recent years, energy researchers have been trying to design new electrode-aqueous interfaces or identify that could speed up HERs and thus enhance the ability of electrolyzers to produce hydrogen. One of the HER catalysts most employed to date is platinum, yet its performance is limited by a process known as hydrogen binding. This process entails the strong adherence of hydrogen atoms to its surface, which can block reaction sites and slow down HERs.

Engineering Cup-Shaped Nanomotors for Promoting Cell Internalization and Synergistic Tumor Therapy

Self-propulsion enzymatic nanomotors have shown tremendous potential in the field of diagnostics. In a study led by Wang and coworkers, nanoenzyme-driven cup-shaped nanomotors were designed for enhanced cell penetration and synergistic photodynamic/thermal treatments under single near-infrared laser irradiation. By combining the concepts of self-propulsion enzymatic nanomotors and synergistic dual-modal therapy, this work provides a new idea and tool for the application of nanomotors in the biomedical field.

Engineers develop technique to enhance lifespan of next-generation fusion power plants

As the world races to build the first commercial nuclear fusion plant, engineers from the University of Surrey have made a breakthrough in understanding how welded components behave inside the extreme conditions of a reactor—offering critical insights for designing safer and longer-lasting fusion energy systems.

Working in collaboration with the UK Atomic Energy Authority (UKAEA), the National Physical Laboratory, and global supplier of scientific instruments for nanoengineering TESCAN, researchers have developed and used an advanced microscopic method to map hidden weaknesses locked inside welded metals during manufacturing that can compromise components and reduce their lifespan.

The research, published in the Journal of Materials Research and Technology, details how they examined P91 steel—a very strong and heat-resistant metal candidate for future plants. Researchers applied an advanced imaging technique using a plasma-focused ion beam and digital image correlation (PFIB-DIC) to map in ultra-narrow weld zones that were previously too small to study with conventional methods.

Cell therapy: The evolution of the ‘living drug’

For decades, researchers have been exploring ways to harness the power of the immune system to treat cancer. One breakthrough is cell therapy, often called ‘living drugs.’ This is a form of immunotherapy that uses immune cells from a patient or a healthy donor. With advanced engineering techniques, scientists enhance these cells to recognize better and attack cancer.

“During the late 1980s and 1990s, cancer researchers started exploring ways to advance immunotherapy by transferring immune cells into a patient to attack cancer cells,” says stem cell transplant and cellular therapy specialist Hind Rafei, M.D. “They recognized that immune cells found inside tumors could help destroy cancer cells, leading to the development of one of the earliest forms of cell therapy — tumor-infiltrating lymphocytes (TILs).”


Cell therapy is a form of immunotherapy that uses immune cells from a patient or a healthy donor to treat cancer. Learn about the types of cell therapy from stem cell transplant and cellular therapy specialist Hind Rafei, M.D.

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

Found in everything from kitchen appliances to sustainable energy infrastructure, stainless steels are used extensively due to their excellent corrosion (rusting) resistance. They’re an important material in many industries, including manufacturing, transportation, oil and gas, nuclear power and chemical processing.

However, stainless steels can undergo a process called sensitization when subjected to a certain range of high temperatures—like during welding—and this substantially deteriorates their resistance. Left unchecked, corrosion can lead to cracking and structural failure.

“This is a major problem for stainless steels,” says Kumar Sridharan, a professor of nuclear engineering and engineering physics and materials science and engineering at the University of Wisconsin–Madison. “When gets corroded, components need to be replaced or remediated. This is an expensive process and causes extended downtime in industry.”

UK scientists are about to attempt to dim the Sun

British scientists could experiment with techniques to block sunlight as part of a £50 million government funded scheme to combat global warming. The geo-engineering project is set to be given the go-ahead within weeks and could see scientists explore techniques including launching clouds of reflective particles into the atmosphere or using seawater sprays to make clouds brighter. Another method involves thinning natural cirrus clouds, which act as heat-trapping blankets. If successful, less sunlight will reach the earth’s surface and in turn temporarily cool the surface of earth. It’s thought to be a relatively cheap way to cool the…

Scientists find way to rewire the brain

The first genetically engineered synapses have been implanted in a mammal’s brain. Chemical brain signals have been bypassed in the brains of mice and replaced with electrical signals, changing their behaviour in incredible ways. Not only did they become more sociable, they were also less anxious and exhibited fewer OCD-like symptoms. This work has sparked hope that one day we could use this technology to help humans with mental health conditions. But would you want someone making permanent edits to your brain?

For the first time, climate scientists can now link specific fossil fuel companies to climate-related economic damages in particular places. A new method has been developed that can show the exact impact these companies are having on our environment — which the world’s top five emitters linked to trillions of dollars of economic losses. Find out how scientists have managed to piece this together — and whether these companies are about to face massive lawsuits.

As we reflect on the death of Pope Francis, we explore his legacy on scientific issues and his transformative stance on climate change. As the spiritual leader of 1.4 billion Catholics, he became an influential figure in advocating for better care to be taken of our planet. Will his legacy continue with the next Pope?

Chapters:
00:00 Intro.
00:28 First brain engineering in a mammal.
10:57 Landmark in fossil fuel lawsuits.
19:33 Climate legacy of Pope Francis.

Hosted by Rowan Hooper and Penny Sarchet, with guests Alexandra Thompson, James Dinneen, William Schafer, Chris Callahan, Justin Mankin and Miles Pattenden.

Learn more ➤ https://www.newscientist.com/podcasts.

Subscribe ➤ https://bit.ly/NSYTSUBS

Hey, what are these curved green flashes above my polymer semiconductor?

In every scientific discovery in the movies, a scientist observes something unexpected, scratches the side of his or her forehead and says “hmmmmm.” In just such a moment in real life, scientists from Canada observed unexpected flashes of curved green light from a red light-emitting polymer above its surface. The flashes were reminiscent of the colored arcs that auroras take above Earth’s poles, providing a clue as to their provenance.

Their resulting investigation of the new phenomenon could find applications towards understanding the failures of polymer materials and more. Their work has been published in Physical Review Letters.

Jun Gao, a professor and chair of Engineering Physics at the Engineering Physics and Astronomy Department at Queen’s University in Ontario, Canada, and graduate student Dongze Wang were investigating the performance of semiconductors called polymer light-emitting electrochemical cells, or PLECs.

/* */