Toggle light / dark theme

Scientists unravel spiraling secrets of magnetic materials for next-generation electronics

Deep within certain magnetic molecules, atoms arrange their spins in a spiral pattern, forming structures called chiral helimagnets. These helical spin patterns have intrigued researchers for years due to their potential for powering next-generation electronics. But decoding their properties has remained a mystery—until now.

Researchers at the University of California San Diego have developed a to accurately model and predict these complex spin structures using quantum mechanics calculations. Their work was published on Feb. 19 in Advanced Functional Materials.

“The helical spin structures in two-dimensional layered materials have been experimentally observed for over 40 years. It has been a longstanding challenge to predict them with precision,” said Kesong Yang, professor in the Aiiso Yufeng Li Family Department of Chemical and Nano Engineering at the UC San Diego Jacobs School of Engineering and senior author of the study. “The helical period in the layered compound extends up to 48 nanometers, making it extremely difficult to accurately calculate all the electron and spin interactions at this scale.”

Apertura Gene Therapy Supports the Broad Institute in Development of Gene Therapy for Prion Disease Using Engineered AAV Capsid Targeting TfR1 for CNS Delivery

Two remarkable innovations coming together to tackle prion disease: AAVs that leverage human receptors to cross the blood-brain-barrier + a way of epigenetically silencing the gene encoding prions. I recall reading those cited papers and both are amazing!


BOSTON and NEW YORK, Feb. 28, 2025 /PRNewswire/ — Apertura Gene Therapy, a biotechnology company focused on innovative gene therapy solutions, supports the Broad Institute of MIT and Harvard, and the Whitehead Institute in advancing a gene therapy approach for the treatment of prion disease. The project is led by the Vallabh-Minikel lab at the Broad Institute which is focused on finding a cure for prion disease, and their approach leverages two cutting-edge technologies developed at the Institutes of both the Broad and Whitehead: the CHARM platform designed in Dr. Jonathan Weismann’s lab, and TfR1 capsid, an engineered AAV designed in the lab of Dr. Ben Deverman, Director of Vector Engineering at the Broad Institute and scientific founder of Apertura.

Prion disease is a rare, fatal, neurodegenerative disorder caused by misfolded proteins. The new gene therapy aims to address the root cause by using CHARM (Coupled Histone tail for Autoinhibition Release of Methyltransferase) to target and silence the gene that codes for the disease-causing protein1. This payload will be combined with Apertura’s TfR1 capsid, an adeno-associated virus (AAV) capsid engineered to efficiently cross the blood-brain barrier by binding to the human TfR1 receptor, which facilitates iron transport into brain cells2. Together, these technologies represent a transformative approach to tackling CNS diseases.

“We are thrilled to see the progress being made in the development of this innovative therapy for prion disease,” said Dr. Sonia Vallabh, co-leader of the group at the Broad working on preventative therapies for prion disease. “The collaborative efforts between Apertura, the Broad Institute and the Whitehead mark a significant milestone toward addressing unmet needs in neurodegenerative disorders.”

Next-generation organic nanozymes offer safe, cost-effective solution for agricultural and food industries

Nanozymes are synthetic materials that have enzyme-like catalytic properties, and they are broadly used for biomedical purposes, such as disease diagnostics. However, inorganic nanozymes are generally toxic, expensive, and complicated to produce, making them unsuitable for the agricultural and food industries.

A University of Illinois Urbana-Champaign research team has developed organic-material-based nanozymes that are non-toxic, environmentally friendly, and cost-effective. In two new studies, they introduce next-generation organic nanozymes and explore a point-of-use platform for molecule detection in .

“The first generation of organic-compound-based (OC) nanozymes had some minor drawbacks, so our research group worked to make improvements. The previous OC nanozymes required the use of particle stabilizing polymers having repeatable functional groups, which assured stability of the nanozyme’s nanoscale framework, but didn’t achieve a sufficiently small particle size,” said lead author Dong Hoon Lee, who completed his Ph.D. from the Department of Agricultural and Biological Engineering (ABE), part of the College of Agricultural, Consumer and Environmental Sciences and The Grainger College of Engineering at the U. of I.

Gravity Tech: The Power To Reshape Our Civilization… And The Cosmos Themselves

Gravity shapes our universe, but could we one day shape gravity? Join us as we explore the possibilities of gravity technology, from artificial gravity and interstellar travel to terraforming and cosmic engineering.

Watch my exclusive video Big Alien Theory https://nebula.tv/videos/isaacarthur–… Nebula using my link for 40% off an annual subscription: https://go.nebula.tv/isaacarthur Get a Lifetime Membership to Nebula for only $300: https://go.nebula.tv/lifetime?ref=isa… Use the link gift.nebula.tv/isaacarthur to give a year of Nebula to a friend for just $30. Visit our Website: http://www.isaacarthur.net Join Nebula: https://go.nebula.tv/isaacarthur Support us on Patreon: / isaacarthur Support us on Subscribestar: https://www.subscribestar.com/isaac-a… Facebook Group: / 1,583,992,725,237,264 Reddit: / isaacarthur Twitter: / isaac_a_arthur on Twitter and RT our future content. SFIA Discord Server: / discord Credits: Black Sun Rising: Living On A Planet Around A Black Hole Credits: Gravity Tech Episode 488; February 27, 2025 Written, Produced & Narrated by: Isaac Arthur Editor: Donagh Broderick Graphics: Jeremy Jozwik, LegionTech Studios, Sergio Botero Select imagery/video supplied by Getty Images Music Courtesy of Epidemic Sound http://epidemicsound.com/creator Phase Shift, “Forest Night” Chris Zabriskie, “Unfoldment, Revealment”, “A New Day in a New Sector”, Stellardrone, “Red Giant”, “Billions and Billions“
Get Nebula using my link for 40% off an annual subscription: https://go.nebula.tv/isaacarthur.
Get a Lifetime Membership to Nebula for only $300: https://go.nebula.tv/lifetime?ref=isa
Use the link gift.nebula.tv/isaacarthur to give a year of Nebula to a friend for just $30.

Visit our Website: http://www.isaacarthur.net.
Join Nebula: https://go.nebula.tv/isaacarthur.
Support us on Patreon: / isaacarthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-a
Facebook Group: / 1583992725237264
Reddit: / isaacarthur.
Twitter: / isaac_a_arthur on Twitter and RT our future content.
SFIA Discord Server: / discord.
Credits:
Black Sun Rising: Living On A Planet Around A Black Hole.
Credits:
Gravity Tech.
Episode 488; February 27, 2025
Written, Produced & Narrated by: Isaac Arthur.
Editor: Donagh Broderick.
Graphics: Jeremy Jozwik, LegionTech Studios, Sergio Botero.

Select imagery/video supplied by Getty Images.
Music Courtesy of Epidemic Sound http://epidemicsound.com/creator.
Phase Shift, \

Organic electrochemical transistors enhance bioelectronic sensor sensitivity by three orders of magnitude

In a breakthrough that could transform bioelectronic sensing, an interdisciplinary team of researchers at Rice University has developed a new method to dramatically enhance the sensitivity of enzymatic and microbial fuel cells using organic electrochemical transistors (OECTs). The research was recently published in the journal Device.

The innovative approach amplifies electrical signals by three orders of magnitude and improves signal-to-noise ratios, potentially enabling the next generation of highly sensitive, low-power biosensors for health and .

“We have demonstrated a simple yet powerful technique to amplify weak bioelectronic signals using OECTs, overcoming previous challenges in integrating fuel cells with electrochemical sensors,” said corresponding author Rafael Verduzco, professor of chemical and biomolecular engineering and materials science and nanoengineering. “This method opens the door to more versatile and efficient biosensors that could be applied in medicine, environmental monitoring and even wearable technology.”

Graphene’s quantum spin injection promises energy-efficient spintronics

Researchers at the National Graphene Institute at the University of Manchester have achieved a significant milestone in the field of quantum electronics with their latest study on spin injection in graphene. The paper, published recently in Communications Materials, outlines advancements in spintronics and quantum transport.

Spin electronics, or spintronics, represents a revolutionary alternative to traditional electronics by utilizing the spin of electrons rather than their charge to transfer and store information. This method promises energy-efficient and high-speed solutions that exceed the limitations of classical computation, for next generation classical and quantum computation.

The Manchester team, led by Dr. Ivan Vera-Marun, has fully encapsulated in , an insulating and atomically flat 2D material, to protect its high quality. By engineering the 2D material stack to expose only the edges of , and laying magnetic nanowire electrodes over the stack, they successfully form one-dimensional (1D) contacts.

Time interfaces: The gateway to four-dimensional quantum optics

A new study from the University of Eastern Finland (UEF) explores the behavior of photons, the elementary particles of light, as they encounter boundaries where material properties change rapidly over time. This research uncovers remarkable quantum optical phenomena that may enhance quantum technology and paves the road for an exciting nascent field: four-dimensional quantum optics.

Four-dimensional optics is a research area investigating light scattering from structures which change in time and space. It holds immense promise for advancing microwave and optical technologies by enabling functionalities such as frequency conversion, amplification, polarization engineering and asymmetric scattering. That is why it has captured the interest of many researchers across the globe.

Previous years have seen significant strides in this area. For instance, a 2024 study published in Nature Photonics and also involving UEF highlights how incorporating optical features like resonances can drastically influence the interaction of electromagnetic fields with time-varying two-dimensional structures, opening exotic possibilities to control light.

Quantum fractal patterns visualized

A team of scientists from Princeton University has measured the energies of electrons in a new class of quantum materials and has found them to follow a fractal pattern. Fractals are self-repeating patterns that occur on different length scales and can be seen in nature in a variety of settings, including snowflakes, ferns, and coastlines.

A quantum version of a , known as “Hofstadter’s butterfly,” has long been predicted, but the new study marks the first time it has been directly observed experimentally in a real material. This research paves the way toward understanding how interactions among electrons, which were left out of the theory originally proposed in 1976, give rise to new features in these quantum fractals.

The study was made possible by a recent breakthrough in , which involved stacking and twisting two sheets of carbon atoms to create a pattern of electrons that resembles a common French textile known as a moiré design.

/* */