Menu

Blog

Archive for the ‘engineering’ category: Page 168

May 13, 2019

Human gut microbiome physiology can now be studied in vitro using Organ Chip technology

Posted by in categories: biotech/medical, computing, engineering, health

The human microbiome, the huge collection of microbes that live inside and on our body, profoundly affects human health and disease. The human gut flora in particular, which harbor the densest number of microbes, not only break down nutrients and release molecules important for our survival but are also key players in the development of many diseases including infections, inflammatory bowel diseases, cancer, metabolic diseases, autoimmune diseases, and neuropsychiatric disorders.

Most of what we know about human– interactions is based on correlational studies between disease state and bacterial DNA contained in stool samples using genomic or metagenomic analysis. This is because studying direct interactions between the microbiome and outside the human body represents a formidable challenge, in large part because even commensal bacteria tend to overgrow and kill within a day when grown on culture dishes. Many of the commensal microbes in the intestine are also anaerobic, and so they require very low oxygen conditions to grow which can injure human cells.

A research team at Harvard’s Wyss Institute for Biologically Inspired Engineering led by the Institute’s Founding Director Donald Ingber has developed a solution to this problem using ‘organ-on-a-chip’ (Organ Chip) microfluidic culture technology. His team is now able to culture a stable complex human microbiome in direct contact with a vascularized human intestinal epithelium for at least 5 days in a human Intestine Chip in which an oxygen gradient is established that provides high levels to the endothelium and epithelium while maintaining hypoxic conditions in the intestinal lumen inhabited by the commensal bacteria. Their “anaerobic Intestine Chip” stably maintained a microbial diversity similar to that in human feces over days and a protective physiological barrier that was formed by human intestinal tissue. The study is published in Nature Biomedical Engineering.

Continue reading “Human gut microbiome physiology can now be studied in vitro using Organ Chip technology” »

May 10, 2019

The Challenge of Building a Self-Driving Car

Posted by in categories: engineering, robotics/AI, transportation

Be one of the first 500 people to sign up with this link and get 20% off your subscription with Brilliant.org! https://brilliant.org/realengineering/

New vlog channel: https://www.youtube.com/channel/UCMet4qY3027v8KjpaDtDx-g

Continue reading “The Challenge of Building a Self-Driving Car” »

May 2, 2019

The Biggest Problems We’re Facing Today & The Future of Engineering: Crash Course Engineering #46

Posted by in categories: engineering, futurism

In our final episode of Crash Course Engineering we are going to take all the tools and ideas we’ve discussed throughout this series and try to imagine where we’re headed. We’re going to explore some of the biggest problems that today’s engineers are trying to solve and make some guesses about what the future of the field might look like.

Crash Course Engineering is produced in association with PBS Digital Studios: https://www.youtube.com/playlist?list=PL1mtdjDVOoOqJzeaJAV15Tq0tZ1vKj7ZV

Continue reading “The Biggest Problems We’re Facing Today & The Future of Engineering: Crash Course Engineering #46” »

May 1, 2019

Brain mapping: New technique reveals how information is processed

Posted by in categories: biotech/medical, engineering, neuroscience

Scientists have discovered a new method for quickly and efficiently mapping the vast network of connections among neurons in the brain.

Researchers combined infrared laser stimulation techniques with functional magnetic resonance imaging in animals to generate mapping of connections throughout the brain. The technique was described in a study published in the journal Science Advances.

“This is a revolution in detecting connections in the brain,” said senior author Anna Wang Roe, Ph.D., a professor in the Division of Neuroscience at OHSU’s Oregon National Primate Research Center. “The ability to easily map connections in the living brain with high precision opens doors for other applications in medicine and engineering.”

Read more

Apr 30, 2019

Asteroid Mining: Getting the first mission off the ground

Posted by in categories: business, engineering, space travel

A fully-contained near-Earth asteroid retrieved to cislunar space can be used as a Research and Development destination for resource extraction and engineering tests as space-native material, unaltered by a radical change in environment, in industrial quantity, and in an accessible orbit.

As a geologist and data manager working in petroleum exploration, I’m not qualified to analyze an all-encompassing view of asteroid mining…but maybe I’m qualified to share what I see from my perspective. Rather than looking at all the reasons why asteroid mining is not currently happening, I’d like to dive deep into how changing decision-making perspectives may make a mission possible.

Continue reading “Asteroid Mining: Getting the first mission off the ground” »

Apr 29, 2019

DARPA: This Smart Contact Lens Could Give Soldiers Superpowers

Posted by in categories: biotech/medical, engineering, military

“Smart” contact lenses sound like something from a sci fi movie — but they’re real, and they could help troops in the field.


French engineering school IMT Atlantique revealed what it calls “the first stand-alone contact lens with a flexible micro battery” earlier this month.

And, notably, it caught the attention of the U.S. military’s attention: the Defense Advanced Research Projects Agency (DARPA) is reportedly interested in the contact lens to augment troops’ visual capabilities in the field, according to Task and Purpose — meaning the gadget could represent the augmented contact lens that DARPA has spent a decade searching for.

Continue reading “DARPA: This Smart Contact Lens Could Give Soldiers Superpowers” »

Apr 28, 2019

CRISPR accuracy increased 50-fold

Posted by in categories: biotech/medical, engineering

Biomedical engineers at Duke University, North Carolina, have developed a method for improving the accuracy of CRISPR genome editing by an average of 50-fold. They believe it can be easily translated to any of the technology’s continually expanding formats.

The approach adds a short tail to the guide RNA which is used to identify a sequence of DNA for editing. This added tail folds back and binds onto itself, creating a “lock” that can only be undone by the targeted DNA sequence.

“CRISPR is generally incredibly accurate, but there are examples that have shown off-target activity, so there’s been broad interest across the field in increasing specificity,” said Charles Gersbach, Professor of Biomedical Engineering at Duke. “But the solutions proposed thus far cannot be easily translated between different CRISPR systems.”

Continue reading “CRISPR accuracy increased 50-fold” »

Apr 24, 2019

The Casimir torque: Scientists measure previously unexamined tiny force

Posted by in categories: computing, engineering, quantum physics

Researchers from the University of Maryland have for the first time measured an effect that was predicted more than 40 years ago, called the Casimir torque.

When placed together in a vacuum less than the diameter of a bacterium (one micron) apart, two pieces of metal attract each other. This is called the Casimir effect. The Casimir torque—a related phenomenon that is caused by the same quantum electromagnetic effects that attract the materials—pushes the materials into a spin. Because it is such a tiny effect, the Casimir torque has been difficult to study. The research team, which includes members from UMD’s departments of electrical and computer engineering and physics and Institute for Research in Electronics and Applied Physics, has built an apparatus to measure the decades-old prediction of this phenomenon and published their results in the December 20th issue of the journal Nature.

“This is an interesting situation where industry is using something because it works, but the mechanism is not well-understood,” said Jeremy Munday, the leader of the research. “For LCD displays, for example, we know how to create twisted liquid crystals, but we don’t really know why they twist. Our study proves that the Casimir torque is a crucial component of liquid crystal alignment. It is the first to quantify the contribution of the Casimir effect, but is not the first to prove that it contributes.”

Continue reading “The Casimir torque: Scientists measure previously unexamined tiny force” »

Apr 24, 2019

This Wireless Charging Station Table is the Perfect Blend of Elegance and Tech

Posted by in category: engineering

And you don’t need an engineering degree to assemble it.

Read more

Apr 24, 2019

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

Posted by in categories: chemistry, engineering, transportation

While studying the chemical reactions that occur in the flow of gases around a vehicle moving at hypersonic speeds, researchers at the University of Illinois used a less-is-more method to gain greater understanding of the role of chemical reactions in modifying unsteady flows that occur in the hypersonic flow around a double-wedge shape.

“We reduced the pressure by a factor of eight, which is something experimentalists couldn’t do,” said Deborah Levin, researcher in the Department of Aerospace Engineering at the University of Illinois at Urbana-Champaign. “In an actual chamber, they tried to reduce the pressure but couldn’t reduce it that much because the apparatuses are designed to operate within a certain region. They couldn’t operate it if the pressure was too low. When we reduced the pressure in the simulation, we found that the instabilities in the calmed down. We still had a lot of the kind of vortical structure—separation bubbles and swirls—they were still there. But the data were more tractable, more understandable in terms of their time variation.”

Continue reading “Controlling instabilities gives closer look at chemistry from hypersonic vehicles” »