Toggle light / dark theme

Observation of the Quantum Spin Liquid State in Novel Material Advances Spintronics

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices.

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a technological revolution by leveraging this newfound knowledge in engineering applications. Spintronics is an emerging field that aims to surpass the limits of traditional electronics by using the spin of electrons, which can be roughly seen as their angular rotation, as a means to transmit information.

But the design of devices that can operate using spin is extremely challenging and requires the use of new materials in exotic states–even some that scientists do not fully understand and have not experimentally observed yet. In a recent study published in Nature Communications, scientists from the Department of Applied Physics at Tokyo University of Science, Japan, describe a newly synthesized compound with the formula KCu6AlBiO4(SO4)5Cl that may be key in understanding the elusive “quantum spin liquid (QSL)” state. Lead scientist Dr Masayoshi Fujihala explains his motivation: “Observation of a QSL state is one of the most important goals in condensed-matter physics as well as the development of new spintronic devices. However, the QSL state in two-dimensional (2D) systems has not been clearly observed in real materials owing to the presence of disorder or deviations from ideal models.”

New nano-engineering strategy shows potential for improved advanced energy storage

The rapid development of renewable energy resources has triggered tremendous demands in large-scale, cost-efficient and high-energy-density stationary energy storage systems.

Lithium ion batteries (LIBs) have many advantages but there are much more abundant metallic elements available such as sodium, potassium, zinc and aluminum.

These elements have similar chemistries to lithium and have recently been extensively investigated, including (SIBs), potassium-ion batteries (PIBs), zinc-ion batteries (ZIBs), and aluminum-ion batteries (AIBs). Despite promising aspects relating to redox potential and density the development of these beyond-LIBs has been impeded by the lack of suitable electrode materials.

Researchers observe branched flow of light for the first time

A team of researchers from the Technion – Israel Institute of Technology has observed branched flow of light for the very first time. The findings are published in Nature and are featured on the cover of the July 2, 2020 issue.

The study was carried out by Ph.D. student Anatoly (Tolik) Patsyk, in collaboration with Miguel A. Bandres, who was a postdoctoral fellow at Technion when the project started and is now an Assistant Professor at CREOL, College of Optics and Photonics, University of Central Florida. The research was led by Technion President Professor Uri Sivan and Distinguished Professor Mordechai (Moti) Segev of the Technion’s Physics and Electrical Engineering Faculties, the Solid State Institute, and the Russell Berrie Nanotechnology Institute.

When waves travel through landscapes that contain disturbances, they naturally scatter, often in all directions. Scattering of light is a , found in many places in nature. For example, scattering of light is the reason for the blue color of the sky. As it turns out, when the length over which disturbances vary is much larger than the wavelength, the wave scatters in an unusual fashion: it forms channels (branches) of enhanced intensity that continue to divide, or branch out, as the wave propagates. This phenomenon is known as branched flow. It was first observed in 2001 with electrons, and had been suggested to be ubiquitous and occur also for all waves in nature, for example sound waves and even ocean waves. Now, Technion researchers are bringing branched flow to the domain of light: they have made an experimental observation of branched flow of light.

Habitat Mars: Learning to live sustainably on the red planet

There’s quite a bit of buzz these days about how humanity could become a “multiplanetary” species. This is understandable, considering that space agencies and aerospace companies from around the world are planning on conducting missions to low earth orbit (LEO), the moon, and Mars in the coming years, not to mention establishing a permanent human presence there and beyond.

To do this, humanity needs to develop the necessary strategies for sustainable living in hostile environments and enclosed spaces. To prepare humans for this kind of experience, groups like Habitat Marte (Mars Habitat) and others are dedicated to conducting simulated missions in analog environments. The lessons learned will not only prepare people to live and work in space but foster ideas for sustainable living here on Earth.

Habitat Marte was founded in 2017 by Julio Francisco Dantas de Rezende, the professor of sustainability in the Department of Product Engineering at the Federal University of Rio Grande do Norte (UFRN) and the director of innovation with the Research Support Foundation (FAPERN). He is also the coordinator of Habitat Marte and Mars Society Brazil.

Engineering an immunotherapy to outwit cancer — and launch a biotech

Tweaking an immune protein called interleukin-18 can overcome tumors that lure it into binding with a decoy receptor protein and render it harmless to cancer cells, new research in mice shows. In conjunction with the paper, published Wednesday in Nature, a company founded by senior author Aaron Ring announced $25 million in initial financing to create and commercialize a drug based on the discovery.

The approach adds another weapon to an immunotherapy arsenal that activates immune responses hijacked by cancer. Checkpoint inhibitors, for example, take the brakes off immune cells that should battle invaders. IL-18 is a cytokine that normally activates T cells and natural killer cells, two immune forces that fight infection, but it’s disarmed by the decoy wielded by tumors.

Experiment confirms 50-year-old theory describing how an alien civilization could exploit a black hole

Aliens & Black Holes

Penrose predicted that the object would acquire a negative energy in this unusual area of space. By dropping the object and splitting it in two so that one half falls into the black hole while the other is recovered, the recoil action would measure a loss of negative energy—effectively, the recovered half would gain energy extracted from the black hole’s rotation. The scale of the engineering challenge the process would require is so great, however, that Penrose suggested only a very advanced, perhaps alien, civilisation would be equal to the task.


A 50-year-old theory that began as speculation about how an alien civilization could use a black hole to generate energy has been experimentally verified for the first time in a Glasgow research lab.

MIT Automated Tabletop Fast Protein Synthesis Machine May Accelerate Drug Development

Automated tabletop machine could accelerate the development of novel drugs to treat cancer and other diseases.

Many proteins are useful as drugs for disorders such as diabetes, cancer, and arthritis. Synthesizing artificial versions of these proteins is a time-consuming process that requires genetically engineering microbes or other cells to produce the desired protein.

MIT chemists have devised a protocol to dramatically reduce the amount of time required to generate synthetic proteins. Their tabletop automated flow synthesis machine can string together hundreds of amino acids, the building blocks of proteins, within hours. The researchers believe their new technology could speed up the manufacturing of on-demand therapies and the development of new drugs, and allow scientists to design artificial proteins by incorporating amino acids that don’t exist in cells.

‘Janus’ nanorods convert light to heat that can destroy pollutants in water

With a new nanoparticle that converts light to heat, a team of researchers has found a promising technology for clearing water of pollutants.

Trace amounts of contaminants such as pesticides, pharmaceuticals and perfluorooctanoic acid in drinking water sources have posed significant health risks to humans in recent years. These micropollutants have eluded conventional treatment processes, but certain chemical processes that typically involve ozone, hydrogen peroxide or UV light have proven effective. These processes, however, can be expensive and energy-intensive.

A new nanoparticle created by Yale University engineers as part of an effort for the Rice-based Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT) could lead to technologies that get around those limitations. The particle is described in a study published this week in the Proceedings of the National Academy of Sciences.

Synthetic Plasma Liquid Based Electronic Circuits Realization-A Novel Concept

Circa 2016


Biomedical research is contributing significant role in the field of biomedical engineering and applied science. It brings research and innovations to a different level. This study investigated artificial human blood –synthetic plasma liquid as conductive medium. Keeping in mind the conductivity of synthetic plasma, astable multivibrator as well as differential amplifier circuit were demonstrated. The circuits were given normal input voltages at regular temperature and ideal conditions. The result shows desired response which supports the novel concept. For both the circuits, phase shift of 180° achieved by analysing biological electronic circuits.

Keywords: Synthetic plasma, biomedical science, human body.