Toggle light / dark theme

Bilal Haider is studying how multiple areas of the brain work together for visual perception. This could help researchers understand if neural activity “traffic jams” underlie all kinds of visual impairments: from running a red light when visual attention is elsewhere, to shedding light on the autism-affected brain.

To do this kind of work, researchers need a reliable “map” of all the visual areas with specific coordinates for each unique brain. Drawing the map requires monitoring and recording data from an active, working brain, which usually means creating a window in the skull to watch blood flow activity.

Haider’s team has developed a better approach—a new kind of window that’s more stable and allows for longer-term studies. The assistant professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University explains how in a paper published in February in Scientific Reports.

Despite having remarkable utility in treating movement disorders such as Parkinson’s disease, deep brain stimulation (DBS) has confounded researchers, with a general lack of understanding of why it works at some frequencies and does not at others. Now a University of Houston biomedical engineer is presenting evidence in Nature Communications Biology that electrical stimulation of the brain at higher frequencies (100Hz) induces resonating waveforms which can successfully recalibrate dysfunctional circuits causing movement symptoms.

“We investigated the modulations in local field potentials induced by electrical stimulation of the subthalamic nucleus (STN) at therapeutic and non-therapeutic frequencies in Parkinson’s disease patients undergoing DBS surgery. We find that therapeutic high-frequency stimulation (130−180 Hz) induces high-frequency oscillations (~300 Hz, HFO) similar to those observed with pharmacological treatment,” reports Nuri Ince, associate professor of biomedical engineering.

For the past couple of decades, (DBS) has been the most important therapeutic advancement in the treatment of Parkinson’s disease, a progressive nervous system disorder that affects movement in 10 million people worldwide. In DBS, electrodes are surgically implanted in the deep brain and electrical pulses are delivered at certain rates to control tremors and other disabling motor signs associated with the .

Engineering projects need goals, and James Worden ’89 set an especially engaging and enduring one for himself as a high school student in the early 1980s while pursuing his passion for homebuilt go-karts.


The MIT Alumni Association seeks to engage and inspire the MIT global community to make a better world. It provides a lifelong community for MIT graduates, a launching pad for students, and growing connection among MIT friends.

Researchers have restored muscle function in research animals with gene therapy. The approach could someday lead to new treatment methods in the elderly.


From pv magazine Australia

A team of researchers from Monash University’s Faculty of Engineering have redesigned the heart of a lithium-sulfur battery, creating a new interlayer that allows for exceptionally fast lithium transfer, as well as an improvement in the performance and lifetime of the batteries.

Traditional wisdom says that 3D printers are unsuitable for manufacturing. There are several reasons for that, including cost, part quality, and time, but labor is one of the most significant challenges. With conventional 3D printers, an operator must remove parts between jobs. That has a cost and slows down large production runs. Belt 3D printers solve this problem and also allow for infinite printing in one axis. Tinybelt, a new 3D printer on Kickstarter right now, makes this technology affordable.

The Tinybelt Kickstarter campaign is currently a third of the way to its $80,000 funding goal and needs your help to reach that goal. But you won’t want to contribute out of a sense of charity — you’ll want to back this campaign because Tinybelt has a lot to offer at an extremely competitive price. Tinybelt’s closest competition, the Creality CR-30 “3DPrintMill,” costs about $1,050. Tinybelt is available on Kickstarter right now for $499. Even at that low price, Tinybelt has a larger build volume than the competition.

As with other belt 3D printers 0, Tinybelt has one axis that is infinite. That means you can print parts as long as you want or print an unlimited number of parts—or both. The other two axes are 300mm and 200mm, which is almost twice the area of the Creality CR-30. A special nozzle made by Slice Engineering for the Mosquito hot end allows for printing at a shallower angle. Other specs are comparable, including the use of a dual-gear Bowden extruder.

Not long ago, Formlabs launched a new ESD Resin specifically for applications that need to keep parts safe from electrostatic discharge (ESD). Now, the double unicorn has announced the latest member of its selective laser sintering (SLS) range of materials—the new high-performance Nylon 12 GF Powder. Good for 3D printing engineering and manufacturing functional prototypes and end-use parts that require thermal stability and structural rigidity, the newly launched material offers excellent stiffness and is the latest meant for use with the Formlabs Fuse 1 industrial SLS 3D printer, which was released last year.

Formlabs’ Nylon 12 GF powder makes it possible to 3D print parts that are thermally stable, and can maintain their dimensional accuracy under load. In the past, glass-filled Nylon materials have been used for a variety of applications, such as 3D printing a scale model, a prosthetic drum stick, a bike rack, loudspeakers, and even a bar! This particular material—one of many Formlabs is planning to introduce for its industrial Fuse 1 3D printer—is said to be a good choice for printing threads and sockets, strong jigs and fixtures, parts subjected to high temperatures and sustained loading, functional prototypes for compsite parts, and replacement parts.

Fabien Cousteau has a vision for how humans can live and work in the ocean. He imagines that long-term stays under the waves could be enabled through the construction of underwater habitats, which would look and feel like houses, as opposed to just sealed, submarine-like bubbles.

These habitats would have a galley, kitchen, workspace, and sleeping quarters, he describes. And of course, there would be windows, or viewports, to the outside world, and a front door in the form of a moon pool that will actually be on the bottom of the house. This would allow easy access into and out of the facility.

The project, called Proteus, would be a marine analog to the International Space Station, and would primarily accommodate aquanauts, the equivalent of an astronaut in the ocean. It’s an idea that has been bubbling for some time now. But it could start taking shape relatively soon. Proteus Ocean Group, a private company which would operate and run Proteus, has recently signed an engineering, procurement, and construction (EPC) contract with a firm that has expertise in creating hyperbaric and pressure vessels in the ocean environment. Much of what Proteus is doing in terms of the technology they’re exploring is similar to space technology.

Using corn for fuel seems like a dumb idea in light of new research.

Recommended Books & Car Products — http://amzn.to/2BrekJm.
EE Shirts! — http://bit.ly/2BHsiuo.

Ethanol makes up 10% of most of the gasoline sold in the United States. A large part of why Ethanol is so prevalent is that the Renewable Fuel Standard, created in 2005, wanted to reduce the emissions of the fuels we use. Ethanol created from corn is renewable, because the corn takes carbon from the atmosphere to grow, creating a cycle that minimizes how much carbon is added to the atmosphere. At least, that’s the story we were told.

New research out of University of Wisconsin — Madison, suggests that “the carbon intensity of corn ethanol is no less than gasoline and likely at least 24% higher.” What’s the solution? We need to choose options that have a greater percentage of net emissions reductions, so that we don’t unintentionally increase emissions if regulators estimated predictions are incorrect.

High-fidelity touch has the potential to significantly expand the scope of what we expect from computing devices, making new remote sensory experiences possible. The research on these advancements, led by a pair of researchers from the J. Mike Walker Department of Mechanical Engineering at Texas A&M University, could help touchscreens simulate virtual shapes.

Dr. Cynthia Hipwell is studying at the finger-device level, while Dr. Jonathan Felts is researching friction in the interaction between single skin cells and the glass of the touchscreen interface. The two are bringing together their respective areas of expertise to apply friction principles at the to finger-device interaction mechanics.

Hipwell highlighted the significance of the pursuit by comparing it to the technologies currently available for conveying immersive and through high-fidelity audio and video.