Toggle light / dark theme

Some blogs and news outlets eschew long titles. Publishers want readers to scan a list of topics that fit on one-line each. But, a better title for this article would be:

“Massive electric consumption by cryptocurrency mining:
An unfortunate environmental nightmare will soon pass!
… Proof-of-Work alternatives are on the horizon”

A considerable amount of electricity is used in the process of mining Bitcoin and other cryptocurrencies. Miners are effectively distributed bookkeepers, and this use of resources is part of a system called “proof-of-work”. It keeps the books fair, honest, and without an ability for the miners to collude (In other words, they cannot ‘cook the books’).

What makes the process unique and exciting is that this “distributed consensus” does not require a trusted authority, like a bank. In fact, the whole point of the blockchain revolution is that users trust a mechanism rather than a bank, government or even each other.

But, for any network that hopes to become part of the financial fabric, it must be ubiquitous and in constant motion. Proof-of-work just doesn’t make the grade, because it doesn’t scale. The need for miners to prove that they did something complex sucks up too much power. If Bitcoin or any proof-of-work currency were to be adopted for even a small fraction of commercial and personal transactions, it would overwhelm the world’s energy services.

One reader suggests the problem will be solved by the recent boom in shale fracking and renewable, non-polluting energy. He points out that crypto mining may even drive a market for distributed, clean electric production.

Unfortunately, clean and cheap power makes the problem worse. Even if electric capacity were to rise dramatically and experience a great cost reduction, cryptocurrency networks would automatically demand all the extra electricity. It is a no-win game, because mining incentives escalate with an increase in supply or drop in cost.

Will large-scale, blockchain-based networks fail, because of enormous electric demand? Fortunately, the future is not so bad, after all. Although networks, like Bitcoin, currently use proof-of-work to ensure honesty and fairness, it is only one of many possible measurement and enforcement mechanisms. Eventually, developers and miners will swap in another proof mechanism to keep the network humming—and without creating an environmental catastrophe.

Will Change in Proof Come in Time?

The political process for changing the fairness mechanism (“forking the code”) is complex and fraught with infighting, but the problem will eventually be addressed, and it will be solved before electricity becomes a critical issue. Despite a messy voting process, the miners have too much at stake to ignore this problem much longer.

Various proof alternatives are already being used in altcoins. Since Bitcoin is perfectly free to steal these techniques (none can be protected by patent or trade secrecy), we can think of these other coins as beta-tests for Bitcoin. How so? As the first and biggest elephant in the room, Bitcoin will likely reign supreme, as long as it doesn’t wait too long before grabbing the best technology and tucking it into its quiver.

Proof-of-Work Alternatives

  • One method, already used by some altcoins, is called “proof-of-stake”. It’s a bit like getting voting rights based on how much land you own. This method does not demand lots of electricity—but some analysts feel that is not as fair, because it cedes network control to the wealthiest members.
  • Another method, called BFT Replication was developed by Marko Vukolić, at the IBM Blockchain Group in Zurich Switzerland. It might be exactly what we need.
  • Yet another method was proposed by C.V. Alkan, an amateur analyst with a passion to solve this problem. He calls it Distributed Objective Consensus.

These aren’t the only alternatives to proof-of-work. Ultimately, one or more of these fairness enforcement mechanisms will make its way into Bitcoin and other currencies and blockchain services. In my opinion, the electrical crisis is a genuine threat, but it is one that with a solution that will be implemented soon—perhaps even this year.

Related:


Philip Raymond co-chairs CRYPSA, publishes A Wild Duck and hosts the New York Bitcoin Event. He is keynote speaker at the Cryptocurrency Expo in India this month. Click Here to inquire about a presentation or consulting engagement.

  • Ketones could super-charge the body in a way that’s unlike any other source of fuel.
  • San Francisco-based startup HVMN recently launched a drink made of pure ketone ester to harness its performance-boosting qualities.
  • The company partnered with Oxford University to leverage $60 million-worth of scientific research on elite athletes.

The nutrition label on a shot-sized bottle of this clear, odorless liquid defies traditional explanation. It contains 120 calories — roughly the equivalent of a hearty slice of bread — yet it has no fat, no protein, and no carbohydrates.

Those calories instead come from ketones, an ingredient that Geoff Woo, cofounder and CEO of San Francisco-based human performance startup called HVMN (pronounced “human”)to call “the fourth macronutrient.”

Read more

Engineers at The Ohio State University are developing technologies that have the potential to economically convert fossil fuels and biomass into useful products including electricity without emitting carbon dioxide to the atmosphere.

In the first of two papers published in the journal Energy & Environmental Science, the engineers report that they’ve devised a process that transforms shale gas into products such as methanol and gasoline—all while consuming carbon dioxide. This process can also be applied to coal and biomass to produce useful products.

Under certain conditions, the technology consumes all the carbon dioxide it produces plus additional carbon dioxide from an outside source.

Read more

Engineers at The Ohio State University are developing technologies that have the potential to economically convert fossil fuels and biomass into useful products including electricity without emitting carbon dioxide to the atmosphere.

In the first of two papers published in the journal Energy & Environmental Science, the engineers report that they’ve devised a process that transforms shale gas into products such as methanol and gasoline—all while consuming carbon dioxide. This process can also be applied to coal and biomass to produce useful products.

Under certain conditions, the consumes all the carbon dioxide it produces plus additional carbon dioxide from an outside source.

Read more

Drone technology is getting better all the time, and one area folks are putting a lot of energy into is boosting the amount of time the things can stay in the air. Drone manufacturer Quaternium is claiming a new milestone in this field, after flying its HYBRiX.20 fuel-electric quadcopter for four hours and forty minutes in what it describes as a world record flight for a self-powered multicopter.

Most multicopter drones you can buy off the shelf boast flight times of 25 to 30 minutes, though we have seen custom-built multicopters fly for far longer. Last year, for example, a commercial drone operator used a bespoke quadcopter to cross the English channel in a 72-minute jaunt, while others such as dronemaker Skyfront have previously claimed endurance records well in excess of four hours.

Read more

Germany has spent $200 billion over the past two decades to promote cleaner sources of electricity. That enormous investment is now having an unexpected impact — consumers are now actually paid to use power on occasion, as was the case over the weekend.

Power prices plunged below zero for much of Sunday and the early hours of Christmas Day on the EPEX Spot, a large European power trading exchange, the result of low demand, unseasonably warm weather and strong breezes that provided an abundance of wind power on the grid.

Such “negative prices” are not the norm in Germany, but they are far from rare, thanks to the country’s effort to encourage investment in greener forms of power generation. Prices for electricity in Germany have dipped below zero — meaning customers are being paid to consume power — more than 100 times this year alone, according to EPEX Spot.

Read more

Many battery scientists are interested in the potential of lithium sulfur batteries because, at least in theory, they offer a high energy density at relatively low cost. However, lithium sulfur batteries face a number of challenges, including the low electrical conductivity of sulfur and the tendency of the cathode to expand significantly in size during the discharge cycle—a tendency that prevents the cathode material from being packed as densely in the battery as scientists would like.

To combat these problems and bring lithium sulfur batteries closer to reality, researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory, the University of Illinois at Chicago (UIC) and Oregon State University have developed a new made of that is encapsulated by graphene.

To make the material, Argonne chemists Jun Lu and Khalil Amine heated and then exposed it to carbon disulfide gas, a common industrial solvent. The creation of lithium sulfide, as well as the graphene encapsulation, happened spontaneously.

Read more