Toggle light / dark theme

“The process of creating methane-based fuel has been theorized before, initially by Elon Musk and Space X. It utilized a solar infrastructure to generate electricity, resulting in the electrolysis of carbon dioxide, which, when mixed with water from the ice found on Mars, produces methane. This process, known as the Sabatier process, is used on the International Space Station to produce breathable oxygen from water. One of the main issues with the Sabatier process is that it is a two-stage procedure requiring large faculties to operate efficiently. The method developed by Xin and his team will use anatomically dispersed zinc to act as a synthetic enzyme, catalyzing the carbon dioxide and initializing the process. This will require much less space and can efficiently produce methane using materials and under conditions similar to those found on the surface of Mars.”


Among the many challenges with a Mars voyage, one of the most pressing is: How can you get enough fuel for the spacecraft to fly back to Earth?

Houlin Xin, an assistant professor in physics & astronomy, may have found a solution.

He and his team have discovered a more efficient way of creating methane-based theoretically on the surface of Mars, which can make the return trip all more feasible.

Circa2016 photonic propulsion.


There’s no argument in the astronomical community—rocket-propelled spacecraft can take us only so far. The SLS will likely take us to Mars, and future rockets might be able to help us reach even more distant points in the solar system. But Voyager 1 only just left the solar system, and it was launched in 1977. The problem is clear: we cannot reach other stars with rocket fuel. We need something new.

“We will never reach even the nearest stars with our current propulsion technology in even 10 millennium,” writes Physics Professor Philip Lubin of the University of California Santa Barbara in a research paper titled A Roadmap to Interstellar Flight. “We have to radically rethink our strategy or give up our dreams of reaching the stars, or wait for technology that does not exist.”

A test firing of Europe’s Helicon Plasma Thruster, developed with ESA by SENER and the Universidad Carlos III’s Plasma & Space Propulsion Team (EP2-UC3M) in Spain. This compact, electrodeless and low voltage design is ideal for the propulsion of small satellites, including maintaining the formation of large orbital constellations.

While traditional chemical have fundamental upper limits, electric propulsion pumps extra energy into the thrust reaction to reach much higher propellant velocities by accelerating propellant using . There are many methods of electric propulsion, many of which require electrodes to apply a current, increasing thruster cost and complexity.

By contrast the Helicon Plasma Thruster uses high power radio frequency waves to excite the propellant into a plasma.

Circa 2017


Developing countries will consume 65% of global energy demand by 2040, according to the US Energy Information Administration. Distribution technology is however often below developed standards in these countries. Moreover, scattered communities across vast distances make traditional western-style power-grid distribution impractical. Renewables can generate electricity, but battery storage is expensive. Now, an Oxford University spin-off thinks solid-state hydrogen storage is the answer.

AUSTIN, Texas — Producing clean water at a lower cost could be on the horizon after researchers from The University of Texas at Austin and Penn State solved a complex problem that had baffled scientists for decades, until now.

Desalination membranes remove salt and other chemicals from water, a process critical to the health of society, cleaning billions of gallons of water for agriculture, energy production and drinking. The idea seems simple — push salty water through and clean water comes out the other side — but it contains complex intricacies that scientists are still trying to understand.

The research team, in partnership with DuPont Water Solutions, solved an important aspect of this mystery, opening the door to reduce costs of clean water production. The researchers determined desalination membranes are inconsistent in density and mass distribution, which can hold back their performance. Uniform density at the nanoscale is the key to increasing how much clean water these membranes can create.

A desalination membrane acts as a filter for salty water: push the water through the membrane, get clean water suitable for agriculture, energy production and even drinking. The process seems simple enough, but it contains complex intricacies that have baffled scientists for decades—until now.

Researchers from Penn State, The University of Texas at Austin, Iowa State University, Dow Chemical Company and DuPont Water Solutions published a key finding in understanding how membranes actually filter minerals from water, online today (Dec. 31) in Science. The article will be featured on the print edition’s cover, to be issued tomorrow (Jan. 1).

“Despite their use for many years, there is much we don’t know about how water filtration membranes work,” said Enrique Gomez, professor of chemical engineering and materials science and engineering at Penn State, who led the research. “We found that how you control the density distribution of the membrane itself at the nanoscale is really important for water-production performance.”

😃 Well, at least fossil-fuel emissions went down.


Global carbon dioxide (CO2) emissions from fossil fuel and industry are expected to drop by 7% in 2020, new analysis shows, as economies around the world feel the effects of Covid-19 lockdowns.

The latest estimates from the Global Carbon Project (GCP) suggest that these emissions will clock in at 34bn tonnes of CO2 (GtCO2) this year – a fall of 2.4GtCO2 compared to 2019.

This annual decline is the largest absolute drop in emissions ever recorded, the researchers say, and the largest relative fall since the second world war.

Recording artist Akon has big plans for his upcoming smart city in Senegal. The new $6 billion development is called Akon City and will fulfill the star’s wish to provide a refuge for members of the African Diaspora both near and far. In addition to the 2000-acre resort, condos, and stadium, the metropolis is also planned to run on renewable energy and mainly use Akoin—the singer’s own cryptocurrency. After two years of planning and development, Akon has announced that they are breaking ground in 2021.

Akon believes that Africa, and his home of Senegal especially, is long overdue for economic investment. He is calling the forthcoming locale a “real-life Wakanda” and plans for it include a tech hub and “Senewood” to develop the film industry. Imagery by Bakri & Associates visualizes the unusual and futuristic forms that define the development and complement Akon’s forward-thinking choices.

This massive construction undertaking is geared towards stimulating the local economy and creating jobs for local workers. Many have praised this and are excited for the prospect of Akon City. But there are also some skeptics. Papa Massama Thiaw, a councilor and president of the youth commission for Ngueniene, shared that though many community members are optimistic, there is a lot of uncertainty. “The studies that were done were not in collaboration with the commune of Ngueniene,” he says. He also fears that jobs won’t be equally distributed. “I don’t want us to be just day laborers. We have to be among the managers.”

We exploit the combinatorial advantage of electrokinetics and tortuosity of a cellulose-based paper network on laboratory grade filter paper for the development of a simple, inexpensive, yet extremely robust (shows constant performance for 12 days) ‘paper-and-pencil’-based device for energy harvesting applications. We successfully achieve harvesting of a maximum output power of ∼640 pW in a single channel, while the same is significantly improved (by ∼100 times) with the use of a multichannel microfluidic array (maximum of up to 20 channels). Furthermore, we also provide theoretical insights into the observed phenomenon and show that the experimentally predicted trends agree well with our theoretical calculations. Thus, we envisage that such ultra-low cost devices may turn out to be extremely useful in energizing analytical microdevices in resource limited settings, for instance, in extreme point of care diagnostic applications.