Toggle light / dark theme

Physicists Think They’ve Found a Way to Harvest Energy from Earth’s Rotation — And It Might Be Just Crazy Enough to Work

Chyba and his team tilted the cylinder precisely at 57 degrees, orienting it perpendicular to both Earth’s magnetic field and its rotational motion. Electrodes attached at each end measured an unmistakable — but minuscule — direct current voltage of about 18 microvolts. Rotate the cylinder 90 degrees, and the voltage vanished. Reverse the cylinder, and the voltage flipped. Control tests with solid cylinders produced no voltage at all. The device was carefully shielded from external interference, such as temperature fluctuations and background electromagnetic noise, to ensure the results were accurate.

“It has a whiff of a perpetual motion machine,” Chyba told Physics Magazine, acknowledging the skepticism his results would inevitably invite. But the physics, he insisted, was sound. The electricity, though tiny, genuinely appeared to flow from Earth’s spin.

The current generated by the device is proportional to its size and the strength of Earth’s magnetic field, which is relatively weak. To produce meaningful amounts of power, the device would need to be much larger or made of materials with even more favorable properties. The researchers speculate that future versions could be miniaturized and connected in series to amplify the voltage, or deployed in space where Earth’s magnetic field is stronger.

IoT vs. IIoT

The IoT world is a big world that everybody is talking about. IoT products nowadays come in different forms — some are labelled as IoT, but in fact they represent only a small portion of what an IoT product really entails. A fully fledged IoT project not only requires programming and hardware expertise but also expertise on a broad range of domains from energy to smart home and even automotive.

The purpose of this article is to highlight the significant differences among the Internet of Things (IoT) and Industrial Internet of Things (IIoT), and while walking through the listed considerations, the reader will have the chance to learn about their ecosystems and the particularities of their applications. Moreover, the gaps in the standardization of the technologies related to the IoT are presented along with the current initiatives from various institutions for mitigating these gaps.

Before talking about the differences between the IoT and IIoT, let’s look first at the similarities of the two. Both have the same fundamental layer on top of which they are built. With IIoT being a subset of the larger IoT, they automatically share common technologies like sensors, cloud platforms, connectivity and analytics.

New device could capture electricity from Earth’s rotational dynamics

However, their idea faced skepticism because conventional physics suggested it was impossible. The established theories indicated that any generated voltage would be nullified by electron rearrangement.

However, these researchers questioned this assumption.

They experimented to see if they could create electricity by using a specially designed hollow magnetic cylinder to capture energy using the Earth’s magnetic field.

Innovative technology enables rapid thin film manufacturing in one minute using only water and oil

A new technology has been developed that enables the manufacturing of thin films, which typically require complex processes, using only water and oil in just one minute. Professor Kang Hee Ku and her research team from the School of Energy and Chemical Engineering at UNIST announced their novel process for creating catalytic thin films using oil droplets dispersed in water.

The developed technology involves a process in which nanomaterial precursors attached to the surface of oil droplets float to the surface of the water, where they assemble into a thin film. When is added, it decomposes due to the thin film precursors, producing gas bubbles that cause the precursors to be lifted and assembled on the water surface within one minute.

This process allows for precise control of the thin film thickness, adjustable from 350 μm, and enables the synthesis of thin films covering an area of up to 100 cm² using various raw materials. The resulting thin films exhibit a porous structure with a , featuring exceptional mechanical strength and flexibility.

Compact solid-state laser system generates 193-nm vortex beam for the first time

Deep ultraviolet (DUV) lasers, known for their high photon energy and short wavelengths, are essential in various fields such as semiconductor lithography, high-resolution spectroscopy, precision material processing, and quantum technology. These lasers offer increased coherence and reduced power consumption compared to excimer or gas discharge lasers, enabling the development of more compact systems.

As reported in Advanced Photonics Nexus, researchers from the Chinese Academy of Sciences have made a significant advancement by developing a compact, solid-state laser system capable of generating 193-nm coherent light.

This wavelength is crucial for photolithography, a process used to etch intricate patterns onto , forming the backbone of modern electronic devices.

A Breakthrough That Could Change Displays Forever

Scientists have developed a model that predicts a massive boost in OLED brightness using polaritons—hybrid light-matter states.

By fine-tuning the number of molecules involved, they achieved a staggering 10-million-fold improvement in efficiency. This discovery could transform OLED technology, making displays brighter and more power-efficient than ever.

A bright new future for oleds?

New electrolytes enable safe, stable and fast-charging lithium-metal batteries

In recent years, researchers have been trying to develop increasingly advanced battery technologies that can be charged faster and store more energy, while also remaining safe and stable over time. Lithium-metal batteries (LMBs), which contain a lithium-metal-based anode, have been found to be promising alternatives to lithium-ion batteries (LiBs), which are currently the most widely used rechargeable batteries.

A key advantage of LMBs is that they can store significantly more energy than LiBs, which could be advantageous for and other large or advanced electronics. Despite their potential, these batteries have so far proved to be less stable and safe than LiBs, while also charging relatively slowly; limitations that have so far prevented their widespread adoption.

A research team at the Korea Advanced Institute of Science and Technology (KAIST) and other institutes recently designed new based on symmetric organic salts, which could help to boost the performance of LMBs. Their newly designed electrolytes, introduced in a paper in Nature Energy, were found to improve the stability and charging speed of LMBs, preventing the formation of dendrites (lithium deposits that cause a battery’s performance to decline over time).