Menu

Blog

Archive for the ‘energy’ category: Page 17

Aug 28, 2024

Rare Milky Way star cluster is packed with red supergiants 1 million times brighter than the sun

Posted by in categories: energy, space

“There are many open clusters in the galaxy. However, not all open clusters have the same level of interest to astronomers,” Ignacio Negueruela, a researcher at the Universidad de Alicante who was part of the team behind the discovery of supergiants in Barbá 2, told Space.com. “Clusters rich in red supergiants are very rare and tend to be very far away, but they play a crucial role in understanding key aspects in the evolution of massive stars.”

The intimidating size and power of supergiants means these monster stars burn through their nuclear fuel much faster than stars like the sun. Whereas our star will exist in its main sequence lifetime for around 10 billion years, supergiants are estimated to last just a few million years.

The short lifetime of supergiants means that while open clusters like Barbá 2 are common, with over 1,100 already discovered in the Milky Way alone, finding one packed with red supergiants is extremely rare.

Aug 28, 2024

Observation of a magneto-Rayleigh-Taylor instability in magnetically collimated plasma jets

Posted by in category: energy

We present the direct experimental observation of the formation of a diamagnetic cavity and magneto-Rayleigh-Taylor (MRT) instability in a betaapprox1 high energy density plasma. Proton radiography is used to measure the two dimensional path-integrated magnetic field in a laser-produced plasma propagating parallel to a preimposed magnetic field. Flutelike structures, associated with the MRT instability, are observed to grow at the surface of the cavity, with a measured wavelength of 1.2 mm and growth time of 4 ns. These measurements are in good agreement with predictions of three dimensional magnetohydrodynamic simulations using the GORGON code.

Aug 25, 2024

Space missions are getting more complex − lessons from Amazon and FedEx can inform satellite and spacecraft management in orbit

Posted by in categories: energy, space

Logistics companies on the ground solve similar problems every day and transport goods and commodities across the globe. So, researchers can study how these companies manage their logistics to help space companies and agencies figure out how to successfully plan their mission operations.

One NASA-funded study in the early 2000s had an idea for simulating space logistics operations. These researchers viewed orbits or planets as cities and the trajectories connecting them as routes. They also viewed the payload, consumables, fuel and other items to transport as commodities.

This approach helped them reframe the space mission problem as a commodity flow problem – a type of question that ground logistics companies work on all the time.

Aug 24, 2024

Could we ever harness quantum vacuum energy?

Posted by in categories: energy, quantum physics

The fabric of spacetime is roiling with vibrating quantum fields, known as vacuum energy. It’s right there, everywhere we look. But could we ever get anything out of it?

Aug 24, 2024

NZ to trial world-first commercial long-range, wireless power transmission

Posted by in categories: business, energy

A New Zealand-based startup has developed a method of safely and wirelessly transmitting electric power across long distances without the use of copper wire, and is working on implementing it with the country’s second-largest power distributor.

The dream of wireless power transmission is far from new; everyone’s favorite electrical genius Nikola Tesla once proved he could power light bulbs from more than two miles away with a 140-foot Tesla coil in the 1890s – never mind that in doing so he burned out the dynamo at the local powerplant and plunged the entire town of Colorado Springs into blackout.

Tesla’s dream was to place enormous towers all over the world that could transmit power wirelessly to any point on the globe, powering homes, businesses, industries and even giant electric ships on the ocean. Investor J.P. Morgan famously killed the idea with a single question: “where can I put the meter?”

Aug 23, 2024

A mechanism that transfers energy from nitrogen to argon enables bidirectional cascaded lasing in atmospheric air

Posted by in categories: energy, physics

To produce light, lasers typically rely on optical cavities, pairs of mirrors facing each other that amplify light by bouncing it back and forth. Recently, some physicists have been investigating the generation of “laser light” in open air without the use of optical cavities, a phenomenon known as cavity-free lasing in atmospheric air.

Aug 23, 2024

First American sodium-ion battery factory will make cells with lifespan of 50,000 cycles that charge in 10 minutes

Posted by in categories: chemistry, energy, sustainability, transportation

Built by Natron Energy, the Edgecombe County facility is planned for 24 GWh of annual capacity, which would turn Natron from a startup into the first sodium-ion battery production juggernaut on US soil.

Sodium-ion batteries are cheaper, safer, with much longer lifespan and faster charging than conventional Li-ion packs.

Chinese companies are already using them in grid-level energy storage systems of local utilities, to balance their renewable energy mix. Some sodium-ion battery packs are even making their way into electric vehicles there, even though the chemistry offers lower energy density than Li-ion batteries.

Aug 23, 2024

Japan forgets about hydrogen and all existing fuels: The future is magnetic levitation, and works like that

Posted by in categories: energy, futurism

Japan is ignoring EVs and hydrogen, and has a good reason: They are producing the first-ever magnetic levitation engine, and works like that.

Aug 22, 2024

Dormant capacity reserve in lithium-ion batteries detected

Posted by in categories: energy, materials

Lithium iron phosphate is one of the most important materials for batteries in electric cars, stationary energy storage systems and tools. It has a long service life, is comparatively inexpensive and does not tend to spontaneously combust. Energy density is also making progress. However, experts are still puzzled as to why lithium iron phosphate batteries undercut their theoretical electricity storage capacity by up to 25% in practice.

In order to utilize this dormant capacity reserve, it would be crucial to know exactly where and how lithium ions are stored in and released from the during the charging and discharging cycles.

Researchers at Graz University of Technology (TU Graz) have now taken a significant step in this direction. Using transmission electron microscopes, they were able to systematically track the lithium ions as they traveled through the battery material, map their arrangement in the crystal lattice of an iron phosphate cathode with unprecedented resolution and precisely quantify their distribution in the crystal.

Aug 22, 2024

Australia needs 126 GW of solar, wind by 2030 to hit net zero by 2050, says BNEF

Posted by in category: energy

Australia can still reach its net-zero energy goal by 2050, according to BloombergNEF (BNEF), but there is no time to waste, with a need for significant investments in solar, wind, and energy storage to stay on track.

Page 17 of 368First1415161718192021Last