Toggle light / dark theme

General Atomics Electromagnetic Systems (GA-EMS) officials demonstrated its Blitzer electromagnetic railgun system at the U.S. Army’s Fires Center of Excellence annual Maneuver and Fires Integration Experiment (MFIX)last month at Ft. Sill in Lawton, Oklahoma.

There were eleven firings of the Blitzer railgun during the MFIX event, all at a target with a range that was greater than previous Blitzer firings. At the end of MFIX, GA-EMS’ Blitzer railgun system will be transported back to Dugway Proving Ground in Utah for more testing later this year.

GA-EMS’ Acoustic Detection System, an unattended ground sensor system for multi-target simultaneous detection and tracking, was also showcased at the MFIX event. The system can monitor multiple sensors simultaneously and enable visual detection and tracking of acoustic and seismic sources.

Read more

Impressive; and this is only what we know about the commercial market. Think about what this means to the black market and dark web’s trading sites.

Another question; how good are the forgeries? One that will be even more tricky with 3D. How do you know for sure you’re carrying a Hermes or wearing Chanel glasses or not. Not to mention art, etc.


The 3D printing industry is expected to triple its revenue mainly through the consumer electronics and automotive industries, each of which will contribute 20% of total revenue.

Read more

Google’s Project Soli was one of the highlights of the company’s developer conference last year, but there’s been little news about it since then.

The technology uses special radar-sensors packed in a tiny chip to detect a person’s physical movements (such as rubbing two fingers together), letting a person do things like turn the volume up on a radio without actual touching anything.

The recent news that Regina Dugan, the head of the Advanced Technology and Projects lab at Google that oversaw Soli, jumped ship to go work at rival Facebook, did not seem like a good sign for the future of Soli. And with Microsoft’s recent unveiling of similar technology, Google’s impressive product demo last year seemed like it might not make it out of the lab.

Read more

Using bacteria to aid in the design of superior biomedical implants capable of resisting colonization by infectious bugs.


Dr. Pushkar Lele, assistant professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University, is developing novel insights in cellular mechanics with bacteria to aid in the design of superior biomedical implants capable of resisting colonization by infectious bugs. Lele’s group also focuses on unraveling the fundamental principles underlying interactions in biological soft-matter to build bio-nanotechnology-based molecular machines. Lele’s lab currently focuses on a unique electric rotary device found in bacteria — the flagellar motor.

According to Lele, it is well established how motile bacteria employ flagellar motors to swim and respond to chemical stimulation. This allows bacteria to search for nutrients and evade harmful chemicals. However, in his recent work, Lele has now demonstrated that the motor is also sensitive to mechanical stimulation and identified the protein components responsible for the response. Sensing initiates a sensitive control of the assemblies of numerous proteins that combine to form the motor. Control over motor assemblies facilitates fine-tuning of cellular behavior and promotes chances of survival in a variety of environments.

“What is the sense of touch in a bacterium? It is likely that they employ appendages such as the flagella to detect solid substrates, analogous to our use of fingers,” Lele said. “How they recognize the substrate using the flagellum has been a long-standing question in biology with tremendous biomedical significance. Our findings have provided a handle on this important problem. We now know [how] the motor-components [are] involved in sensing the substrate [and] would like to know how these sensors trigger signaling networks that ultimately cause infections. “.

Quantum Sensors enables precise imaging of magnetic fields of superconductors.


Scientists at the Swiss Nanoscience Institute and the Department of Physics at the University of Basel have developed a new method that has enabled them to image magnetic fields on the nanometer scale at temperatures close to absolute zero for the first time. They used spins in special diamonds as quantum sensors in a new kind of microscope to generate images of magnetic fields in superconductors with unrivaled precision. In this way the researchers were able to perform measurements that permit new insights in solid state physics, as they report in Nature Nanotechnology.

Researchers in the group led by the Georg-H. Endress Professor Patrick Maletinsky have been conducting research into so-called nitrogen-vacancy centers (NV centers) in diamonds for several years in order to use them as high-precision sensors. The NV centers are natural defects in the diamond crystal lattice. The electrons contained in the NVs can be excited and manipulated with light, and react sensitively to electrical and magnetic fields they are exposed to. It is the spin of these electrons that changes depending on the environment and that can be recorded using various measurement methods.

Maletinsky and his team have managed to place single NV spins at the tips of atomic force microscopes to perform nanoscale magnetic field imaging. So far, such analyses have always been conducted at room temperature. However, numerous fields of application require operation at temperatures close to absolute zero. Superconducting materials, for example, only develop their special properties at very low temperatures around −200°C. They then conduct electric currents without loss and can develop exotic magnetic properties with the formation of so-called vortices.

Read more

I forgot Sony in the list of contact lens patents. Sony’s new camera contact patent. So, we have Google, Huawei, and Samsung with AR and CPU patents and Sony’s patents on the camera. Waiting for Apple and my favorite Microsoft’s announcements.


Sony has joined Google and Samsung in the world of contact lens camera patents, Sony’s version also has zoom and aperture control built in.

Read more

00_naut

“These cables, whilst stylish, still put a large emphasis on practicality – having been crafted from durable, braided nylon designed to withstand wear and tear. The range also goes further, the company professes, by solving everyday problems such as ‘forgetting your cable, running out of battery on-the-go, or straining to use your device while charging’.”

Read more

LeEco is known as the “Netflix of China” due to its very popular video streaming service, but the conglomerate also has interests in a much wider range of sectors including smartphones, TVs and electric vehicles.

Ding Lei, LeEco’s auto chief and a former top official at General Motors’ China venture with SAIC Motor, says part of LeEco’s advantage in tomorrow’s auto industry is that it carries no baggage from today’s.

This, the man said, is the future of cars, and the Chinese consumer electronics company LeEco is going to make that future a reality.

Read more

Blockchaining coming to healthcare digital services.


Blockchain and digital health services could be a perfect match for each other across a variety of applications. From distributed interoperable health records to proof of adherence for medication, the healthcare industry is ripe for digital innovation. More generally, technology is a hyper-deflationary force, and this could be particularly effective in delivering quality health care through more effective channels such as mobile apps.

Investments in the digital health space have increased significantly in the past two years. This is largely possible because of improved low-power sensors and user-friendly cloud platforms that interface with those hardware devices. The Rock Health Funding Database shows a $4.5 billion increase in venture funding in digital health from 2014 to 2015.

Smart contract technology is built on top of virtual currencies such as Bitcoin and is a hallmark of “Bitcoin 2.0” platforms. Blockchain is the fundamental infrastructure needed for Bitcoin transactions to work, and an enabling technology for the next generation of asset-based platforms.