Toggle light / dark theme

Artificial intelligence; it’s everywhere! Our homes, our cars, our schools and work. So where, if ever, does it stop? And how close to ourselves can our devices reasonably get? For this video, Unveiled uncovers plans to use human brain implants to improve the performance of our brains! What do you think? Are neural implants a good thing, or a bad thing?

This is Unveiled, giving you incredible answers to extraordinary questions!

Find more amazing videos for your curiosity here:
What If Humanity Was A Type III Civilisation? — https://www.youtube.com/watch?v=jcx_nKWZ4Uw.
Why the Microverse Might Be a Reality — https://www.youtube.com/watch?v=BF6n-bjYr7Y

Are you constantly curious? Then subscribe for more from Unveiled ► https://goo.gl/GmtyPv.

#AI #ArtificialIntelligence #Advanced #Future #Futuristic #Technology #Civilization

Echolocation is a skill we usually associate with animals such as bats and whales, but some blind humans also use the echoes of their own sounds to detect obstacles and their outlines. Some use the tapping of a cane or the snapping of their fingers to make the necessary noise, while others use their mouths to make a clicking sound.

Despite how useful this skill can be, very few blind people are currently taught how to do it. Expert echolocators have been trying to spread t… See more.


With enough training, most humans can learn how to echolocate, using their tongue to make clicking sounds and interpreting the echoes that come back, reflected from the surrounding environment.

In as few as 10 weeks, researchers have been able to teach participants how to navigate obstacles and recognize the size and orientation of objects using the rebounding calls of their clicks.

The experiment, the results of which were published in 2021, involved 12 participants who’d been diagnosed as legally blind during their childhood, and 14 sighted people.

After some serious number crunching, a UBC researcher has come up with a mathematical model for a viable time machine.

Ben Tippett, a mathematics and physics instructor at UBC’s Okanagan campus, recently published a study about the feasibility of . Tippett, whose field of expertise is Einstein’s theory of general relativity, studies black holes and science fiction when he’s not teaching. Using math and physics, he has created a formula that describes a method for time travel.

“People think of time travel as something as fiction,” says Tippett. “And we tend to think it’s not possible because we don’t actually do it. But, mathematically, it is possible.”

Mike LorreyThe arguments I put into my article in The Space Review for the Space Force are valid to this discussion. https://www.thespacereview.com/article/3576/1


Real-world examples make the abstract description of machine learning become concrete.

In this post you will go on a tour of real world machine learning problems. You will see how machine learning can actually be used in fields like education, science, technology and medicine.

Each machine learning problem listed also includes a link to the publicly available dataset. This means that if a particular concrete machine learning problem interest you, you can download the dataset and start practicing immediately.

Understanding the mind and how thinking occurs has been a challenge for philosophers, scientists, theorists, educators, and artists throughout history. Until recently, ideas about how we learn have been mainly theoretical and intuitive. However, with ongoing advances in neuroscience, considerable progress is occurring. As a result, a paradigm shift is taking hold in human cognition, pointing to a new science-based understanding about the way we think and, ultimately, the way we learn.

This paradigm shift — a move away from traditional notions of the mind to an “embodied cognition” model of human thinking and learning — is the subject of a new book “Movement Matters: How Embodied Cognition Informs Teaching and Learning”. The book is summarised as follows:

“Experts translate the latest findings on embodied cognition from neuroscience, psychology, and cognitive science to inform teaching and learning pedagogy.”

This London Futurists webinar featured the co-editors of this book, Sheila Macrine, Professor of STEM Education & Teacher Development at the University of Massachusetts, Dartmouth, and Jennifer Fugate, Associate Professor in the Department of Health Service Psychology, at Kansas City University.

In the webinar, professors Macrine and Fugate highlighted key implications of this improved understanding for the future of teaching and learning, and answered audience questions.

The webinar was recorded on Saturday 18th June 2022. It was introduced and moderated by David Wood, Chair of London Futurists.

How small is a TRANSISTOR exactly? Companies like Intel and AMD talk about transistors being 2 or 3 nanometers large, but is that actually how small they are? In this video, we’re going to zoom in on the smallest devices and technologies that drive our modern world.

If you’re wondering why some devices are out of order in regards to size, here’s the reason. The order of devices shown is primarily organized by decreasing size, however sometimes we prioritize the year in which the technology was commercialized, and then a couple times we order the objects based on the flow of the animation.

Do you want to support in-depth engineering and technology education? Support us on: www.patreon.com/brancheducation.

Or Join us on YouTube Memberships:
https://www.youtube.com/channel/UCdp4_l1vPmpN-gDbUwhaRUQ/join.

Website: www.branch.education.

Credits:

A UC Riverside genetic discovery could turn disease-carrying mosquitoes into insect Peter Pans, preventing them from ever maturing or multiplying.

In 2018, UCR entomologist Naoki Yamanaka found, contrary to accepted scientific wisdom, that an important steroid hormone requires to enter or exit fruit fly cells. The hormone, ecdysone, is called the “molting hormone.” Without it, flies will never mature, or reproduce.

Before his discovery, textbooks taught that ecdysone travels freely across cell membranes, slipping past them with ease. “We now know that’s not true,” Yamanaka said.

Researchers in the US have demonstrated the presence of quantum mechanical effects in acid–base interactions, challenging the Brønsted–Lowry theory. The resultant short hydrogen bond is stabilised by a delocalised proton, which rapidly shuttles between the acid and base molecules and is characterised by highly unusual spectral features.

The Brønsted–Lowry theory was proposed in 1923 and explains acid–base interactions in terms of proton transfer. This theory is one of the cornerstones of chemical understanding and is amongst the first principles taught to school students. But despite a growing appreciation for the limitations of traditional thinking, the surprising discovery of a quantum component to such fundamental reactivity was entirely serendipitous.

‘It was luck,’ admits Daniel Kuroda of Louisiana State University, one of the principal researchers involved in the study. ‘We were looking at the structure of liquids … and saw this paper [about an acid–base mixture] with close to the conductivity of sulfuric acid but no ionisation. We wanted to see what the structure was … so we started looking into the project and then realised that clearly we have something very different.’

ENGAGE, the XR education and enterprise metaverse company, today unveiled its Link social platform which the company calls a “fully featured corporate metaverse.”

Previously codenamed Oasis when it was first revealed in June 2021, the Ireland-based studio calls Link a “professional metaverse,” as it was designed to host persistent virtual worlds which serve as gateways to individual spaces where employees, students and individual users can interact.

The studio published a six-minute first look at Link today, shown below: