Toggle light / dark theme

Krishna Shenoy helps to restore lost function for disabled patients by designing prosthetic devices that can translate neural brain activity.

Krishna Shenoy directs the Neural Prosthetic Systems Lab, where his group conducts neuroscience and neuro-engineering research to better understand how the brain controls movement and to design medical systems to assist those with movement disabilities. Shenoy also co-directs the Neural Prosthetics Translational Lab, which uses these advances to help people with severe motor disabilities. Shenoy received his bachelor’s degree in electrical engineering from UC-Irvine and his master’s and doctoral degrees in the same field from MIT. He was a neurobiology postdoctoral fellow at Caltech in Pasadena and then joined Stanford University, where he is a professor of electrical engineering, bioengineering and neurobiology.

“We are starting to help patients in ways that we did not think were possible,” Thomas Oxley (Mount Sinai Hospital, New York, USA) tells NeuroNews, referring to the potential of brain-computer interface (BCI) technology. Alongside his role as a vascular and interventional neurologist, Oxley is chief executive officer of Synchron, developer of the Stentrode motor neuroprosthesis. The Stentrode is an implantable BCI device that, according to Oxley, is the first of its kind to be in the early feasibility clinical stage in the USA following US Food and Drug Administration (FDA) approval of Synchron’s investigational device exemption (IDE) application last month. Speaking to NeuroNewsfollowing a presentation on the topic at the Society of NeuroInterventional Surgery’s 18thannual meeting (SNIS; 26–29 July 2021, Colorado Springs, USA and virtual), Oxley gives an overview of the COMMAND early feasibility study, anticipates key results, and considers more generally how BCI technology could shape the future of deep brain stimulation.

In the future, a woman with a spinal cord injury could make a full recovery; a baby with a weak heart could pump his own blood. How close are we today to the bold promise of bionics—and could this technology be used to improve normal human functions, as well as to repair us? Join Bill Blakemore, John Donoghue, Jennifer French, Joseph J. Fins, and P. Hunter Peckham at “Better, Stronger, Faster,” part of the Big Ideas Series, as they explore the unfolding future of embedded technology.

This program is part of the Big Ideas Series, made possible with support from the John Templeton Foundation.

Visit our Website: http://www.worldsciencefestival.com/
Like us on Facebook: https://www.facebook.com/worldscience… us on twitter: https://twitter.com/WorldSciFest Original Program date: May 31, 2014 Host: Bill Blakemore Participants: John Donoghue, Jennifer French, Joseph J. Fins, P. Hunter Peckham Re-engineering the anatomy of the “Vitruvian Man” 00:00 Bill Blakemore’s Introduction. 2:06 Participant introductions. 4:27 What is FES? (Functional Electrical Stimulation) 6:06 A demonstration with FES and without. 10:06 How did you test FES systems? 14:16 Jen French the first bionic pioneer. 16:40 What was the journey like from injury to today? 18:35 A live demonstration of FES. 20:40 What is BrainGate? 27:55 What is the potential for this technology? 37:00 When will this technology be publicly available? 40:50 A cell phone app to drink water or stand up? 44:55 Jen French would be the first to try new technology. 50:39 What is the history of altering the human brain? 1:00:57 The move from chemical to electrical medical care. 1:05:40 The challenge of what is going to drive the delivery of care to groups in need. 1:11:36 Can these devices be implanted without surgery? 1:18:13 What field needs the most funding for this to become available to everyone? 1:19:40 What are the numbers of people who can use this technology? 1:23:44 Why can’t we use stem cells to reconnect human spinal tissue? 1:25:37 What is the collaboration level between institutions? 1:29:16 How far away are we from using brain waves to control objects and communicate with each other? 1:30:20
Follow us on twitter: https://twitter.com/WorldSciFest.

Original Program date: May 31, 2014
Host: Bill Blakemore.
Participants: John Donoghue, Jennifer French, Joseph J. Fins, P. Hunter Peckham.

Re-engineering the anatomy of the “Vitruvian Man” 00:00.

Bill Blakemore’s Introduction. 2:06

Mobile robots are now being introduced into a wide variety of real-world settings, including public spaces, home environments, health care facilities and offices. Many of these robots are specifically designed to interact and collaborate with humans, helping them to complete hands-on physical tasks.

To improve the performance of on interactive and manual tasks, roboticists will need to ensure that they can effectively sense stimuli in their environment. In recent years, many engineers and material scientists have thus been trying to develop systems that can artificially replicate biological sensory processes.

Researchers at Scuola Superiore Sant’Anna, Ca’ Foscari University of Venice, Sapienza University of Rome and other institutes in Italy have recently used an artificial skin and a that could be used to improve the tactile capabilities of both existing and newly developed robots to replicate the function of the so-called Ruffini receptors. Their approach, introduced in a paper published in Nature Machine Intelligence, replicates the function of a class of cells located on the human superficial dermis (i.e., subcutaneous skin tissue), known as Ruffini receptors.

A team of researchers at ETH Zurich in Switzerland have created an intriguing new exosuit that’s designed to give its wearer an extra layer of muscles.

The suit is intended to give those with limited mobility back their strength — and early trials are already showing plenty of potential, the scientists say.

The soft “wearable exomuscle,” dubbed the Myoshirt, automatically detects its wearer’s movement intentions and use actuators to literally take some of the load off.

Takao Someya and colleagues at the University of Tokyo have developed the first artificial-skin patch that does not affect the touch sensitivity of the real skin beneath it. The new ultrathin sensor could be used in applications as diverse as prosthetics and human-machine interfaces.

“A wearable sensor for your fingers has to be extremely thin,” explains Tokyo’s Sunghoon Lee. “But this obviously makes it very fragile and susceptible to damage from rubbing or repeated physical actions.” For this reason most e-skins developed to date been relatively thick and bulky.

In contrast, the sensor developed by the Tokyo team is thin and porous and consists of two layers (Science 370 966). The first layer is an insulating mesh-like network comprising polyurethane fibres around 200–400 nm thick. The second layer is a network of lines that makes up the functional electronic part of the device – a parallel-plate capacitor. This is made of gold on a supporting scaffold of polyvinyl alcohol (PVA), a water-soluble polymer often found in contact lenses. Once this layer has been fabricated, the PVA is washed away to leave only the gold support. The finished pressure sensor is around 13 μ m thick.

An electrochemically powered artificial muscle made from twisted carbon nanotubes contracts more when driven faster thanks to a novel conductive polymer coating. Developed by Ray Baughman of the University of Texas at Dallas in the US and an international team, the device overcomes some of the limitations of previous artificial muscles, and could have applications in robotics, smart textiles and heart pumps.

Carbon nanotubes (CNTs) are rolled-up sheets of carbon with walls as thin as a single atom. When twisted together to form a yarn and placed in an electrolyte bath, CNTs expand and contract in response to electrochemical inputs, much like a natural muscle. In a typical set-up, a potential difference between the yarn and an electrode drives ions from the electrolyte into the yarn, causing the muscle to actuate.

While such CNT muscles are highly energy efficient and extremely strong – they can lift loads up to 100,000 times their own weight – they do have limitations. The main one is that they are bipolar, meaning that the direction of their movement switches whenever the potential drops to zero. This reduces the overall stroke of the actuator. Another drawback is that the muscle’s capacitance decreases when the potential is changed quickly, which also causes the stroke to decrease.

Materials scientists and bioengineers at the intersection of regenerative medicine and bioinspired materials seek to develop shape-programmable artificial muscles with self-sensing capabilities for applications in medicine. In a new report now published in Science Advances, Haoran Liu and a team of researchers in systems and communications engineering at the Frontier Institute of Science and Technology, Jiaotong University, China, were inspired by the coupled behavior of muscles, bones, and nerve systems of mammals and other living organisms to create a multifunctional artificial muscle in the lab. The construct contained polydopamine-coated liquid crystal elastomer (LCE) and low-melting point alloys (LMPA) in a concentric tube or rod. While the team adopted the outer liquid crystal-elastomer to mimic reversible contraction and recovery, they implemented the inner low-melting point alloy for deformation locking and to detect resistance mechanics, much like bone and nerve functions, respectively. The artificial muscle demonstrated a range of performances, including regulated bending and deformation to support heavy objects, and is a direct and effective approach to the design of biomimetic soft devices.

Soft robotics inspired by the skeleton–muscle–nerve system

Scientists aim to implement biocompatibility between soft robotic elements and human beings for assisted movement and high load-bearing capacity; however, such efforts are challenging. Most traditional robots are still in use in industrial, agricultural and aerospace settings for high-precision sensor-based, load-bearing applications. Several functional soft robots contrastingly depend on materials to improve the security of human-machine interactions. Soft robots are therefore complementary to hard robots and have tremendous potential for applications. Biomimetic constructs have also provided alternative inspiration to emulate the skeleton-muscle-nerve system to facilitate agile movement and quick reaction or thinking, with a unique body shape to fit tasks and perform diverse physiological functions. In this work, Liu et al were inspired by the fascinating idea of biomimicry to develop multifunctional artificial muscles for smart applications.

Researchers at ETH Zurich have developed a lightweight, wearable textile exomuscle that uses sensors embedded in its fabric to detect a user’s movement intentions and chip in extra force as needed. Initial tests show a significant boost in endurance.

Where powered exoskeletons act as both muscle and bone, providing force as well as structural support, exomuscles make use of the body’s own structure and simply chip in with additional force. As a result, they’re much lighter and less bulky, but they’re also limited in how much force they can deliver, since human bones and joints can only take so much.

This “Myoshirt” from ETH Zurich is designed as a vest, with cuffs for the upper arm and forearm. Sensors in the fabric feed data on muscle control impulses to a control box, which processes the information in real time and decides when to actuate the artificial muscles – which are short Dyneema cables aligned parallel with the wearer’s own muscles. By shortening the cables as the muscles contract, the Myoshirt is able to contribute power to your movements in a subtle, discreet, intuitive and tuneable way.