Toggle light / dark theme

Generative AI is quickly transforming the way we do things in almost every facet of life, including the evolving landscape of data management and cybersecurity. Cohesity, a company focused on AI-powered data management and security, launched Cohesity Gaia to apply generative AI in a unique way designed to enable customers to access, analyze, and interact with their data.

Cohesity Gaia is a generative AI-powered conversational search assistant. Cohesity blends Large Language Models with an enterprise’s own data and provides organizations with a tool to interact with and extract value from their information repositories. The platform is designed to enable natural language interactions, making it easier for users to query their data without needing to navigate complex databases or understand specialized query languages.

At its heart, Cohesity Gaia leverages generative AI to facilitate conversational interactions with data. Instead of searching through files or databases in the traditional manner, users can engage in a dialogue with the data, asking questions and receiving contextually relevant, accurate answers.

Malicious actors were detected abusing the open-source hypervisor platform QEMU as a tunneling tool in a cyberattack against a large company.

QEMU is a free emulator and hypervisor that allows you to run other operating systems as guests on a computer.

As part of the attack, threat actors used QEMU to create virtual network interfaces and a socket-type network device to connect to a remote server. This allowed the threat actors to create a network tunnel from the victim’s system to the attacker’s server with negligible impact on system performance.

Researchers have developed a computer “worm” that can spread from one computer to another using generative AI, a warning sign that the tech could be used to develop dangerous malware in the near future — if it hasn’t already.

As Wired reports, the worm can attack AI-powered email assistants to obtain sensitive data from emails and blast out spam messages that infect other systems.

“It basically means that now you have the ability to conduct or to perform a new kind of cyberattack that hasn’t been seen before,” Cornell Tech researcher Ben Nassi, coauthor of a yet-to-be-peer-reviewed paper about the work, told Wired.

Interestingly enough, although Elon Musk’s Neuralink received a great deal of media attention, early in 2023, Synchron published results from its first-in-human study of four patients with severe paralysis who received its first-generation Stentrode neuroprosthesis implant. The implant allowed participants to create digital switches that controlled daily tasks like sending texts and emails, partaking in online banking, and communicating care needs. The study’s findings were published in a paper in JAMA Neurology in January 2023. Then, before September, the first six US patients had the Synchron BCI implanted. The study’s findings are expected by late 2024.

Let’s return to Upgrade. “One part The Six Million Dollar Man, one part Death Wish revenge fantasy” was how critics described the movie. While Death Wish is a 1974 American vigilante action-thriller movie that is partially based on Brian Garfield’s 1972 novel of the same name, the American sci-fi television series The Six Million Dollar Man from the 1970s, based on Martin Caidin’s 1972 novel Cyborg, could be considered a landmark in the context of human-AI symbiosis, although in fantasy’s domain. Oscar Goldman’s opening line in The Six Million Dollar Man was, “Gentlemen, we can rebuild him. We have the technology. We have the capability to make the world’s first bionic man… Better than he was before. Better—stronger—faster.” The term “cyborg” is a portmanteau of the words “cybernetic” and “organism,” which was coined in 1960 by two scientists, Manfred Clynes and Nathan S Kline.

At the moment, “cyborg” doesn’t seem to be a narrative of a distant future, though. Rather, it’s very much a story of today. We are just inches away from becoming cyborgs, perhaps, thanks to the brain chip implants, although Elon Musk perceives that “we are already a cyborg to some degree,” and he may be right. Cyborgs, however, pose a threat, while the dystopian idea of being ruled by Big Brother also haunts. Around the world, chip implants have already sparked heated discussions on a variety of topics, including privacy, the law, technology, medicine, security, politics, and religion. USA Today published a piece headlined “You will get chipped—eventually” as early as August 2017. And an article published in The Atlantic in September 2018 discussed how (not only brain chips but) microchip implants, in general, are evolving from a tech-geek curiosity to a legitimate health utility and that there may not be as many reasons to say “no.” But numerous concerns about privacy and cybersecurity would keep us haunted. It would be extremely difficult for policymakers to formulate laws pertaining to such sensitive yet quickly developing technology.

Cybersecurity company Cybereason reveals that the actual price of a ransomware attack on a business includes much more than the ransom itself.

When choosing whether to comply and pay the demanded ransom to cyber attackers, there are many different considerations to have in mind. The latest report by Cybereason reveals that only one in two victims who paid ransom actually got their data back uncorrupted, and four out of five were eventually breached again by the same attackers.

According to Cybernews, the company’s researchers went over 1,008 IT professionals who all dealt with breachers at least once in the past two years and found that 84% chose to pay the ransom, averaging $1.4 million in the US. However, only 47% got their data and services back uncorrupted, so this doesn’t appear to have been the optimal strategy.

The speed of innovation in bioelectronics and critical sensors gets a new boost with the unveiling of a simple, time-saving technique for the fast prototyping of devices.

A research team at KTH Royal Institute of Technology and Stockholm University reported a simple way to fabricate electrochemical transistors using a standard Nanoscribe 3D micro printer. Without cleanroom environments, solvents, or chemicals, the researchers demonstrated that 3D micro printers could be hacked to laser print and micropattern semiconducting, conducting, and insulating polymers.

Anna Herland, professor in Micro-and Nanosystems at KTH, says the printing of these polymers is a key step in prototyping new kinds of electrochemical transistors for medical implants, wearable electronics and biosensors.