Toggle light / dark theme

Hmmmm.


Sam Gussman arrived four years ago at Stanford University hoping to eventually parlay an engineering degree into a product manager job at Google or Facebook.

Working for the National Security Agency or other intelligence bureaus never crossed his mind. For Gussman, the government didn’t seem like the place for the most exciting, cutting-edge research in human computer interaction — his area of interest. Plus, it did no on-campus recruiting, unlike the many tech startups that e-mailed him daily about job opportunities and happy hours.

That career plan changed dramatically after Gussman took a new graduate class at Stanford’s engineering school called Hacking for Defense, or H4D, where he got to tackle real-life national security challenges. There he met with U.S. military officers and studied the mental duress soldiers face during combat and then worked on software that distinguishes insurgents from civilians in video feeds from drones. Suddenly government work was “super cool.”

DAILY VIDEO: Microsoft Starts Quantum Computer Development Program; Cerber Ransomware Expands Database Encryption Attacks; IBM Debuts Watson Internet of Things Services Practice; and there’s more.

Today’s topics include Microsoft’s plan to build a Quantum computer, Trend Micro’s find that the Cerber malware is seeking out database files to encrypt and hold for ransom, IBM’s new Watson internet of things services for the automotive, electronics and insurance industries, and the release of the Microsoft Office Online Server update.

Microsoft is on a mission to build a quantum computer, and the company has appointed Todd Holmdahl to manage the project. Holmdahl is the corporate vice president of Microsoft Quantum, a unit dedicated to turning the company’s quantum computing research into real-world products.

Read more

How does one prevent hacking from a QC system? Easy, on board to QC first before others do.


Quantum computers have the potential to perform calculations faster than ever possible before, inviting a significant rethink in how we approach cyber security.

Given the amount of research being ploughed into this area, we are likely to see a commercially viable machine in the near future, so cryptographers and the cyber security industry in general should work to have a clear view on the implications way ahead of that achievement.

Sure, But What Is Quantum Computing?

TOKYO — Leading information technology companies are rushing to create systems that use artificial intelligence to defend against cyberattacks. The goal is to commercialize AI software to detect even ingeniously designed attacks, identify the perpetrators, and quickly mount a defense.

However, research is also taking place in the U.S. and elsewhere on ways to harness AI for cyberwarfare, and the trend suggests there will come a time when the battles in cyberspace pit AI against AI, leaving humans sidelined.

Fujitsu Laboratories, the R&D unit of Japanese IT giant Fujitsu, has begun to develop an AI system to protect corporate information systems from cyberattack. The system would learn to recognize regular patterns of network activity so deviant behavior stands out. The company aims to have a commercial product ready in two to three years that could uncover and respond to attacks even from hackers who intentionally space out their login attempts so they are difficult to discover.

Read more

Researchers from Yale University have unveiled CertiKOS, the world’s first operating system that runs on multi-core processors and shields against cyber-attacks. Scientists believe this could lead to a new generation of reliable and secure systems software.

Led by Zhong Shao, professor of computer science at Yale, the researchers developed an operating system that incorporates formal verification to ensure that a program performs precisely as its designers intended — a safeguard that could prevent the hacking of anything from home appliances and Internet of Things (IoT) devices to self-driving cars and digital currency. Their paper on CertiKOS was presented at the 12th USENIX Symposium on Operating Systems Design and Implementation held Nov. 2–4 in Savannah, Ga.

Computer scientists have long believed that computers’ operating systems should have at their core a small, trustworthy kernel that facilitates communication between the systems’ software and hardware. But operating systems are complicated, and all it takes is a single weak link in the code — one that is virtually impossible to detect via traditional testing — to leave a system vulnerable to hackers.

Read more

Wonder how Tim Cook, Satya & Bill, and Eric and Sergey will respond.


Overseas critics of the law argue it threatens to shut foreign technology companies out of various sectors. PHOTO: REUTERS

BEIJING: China adopted a controversial cybersecurity law on Monday to counter what Beijing says are growing threats such as hacking and terrorism, although the law has triggered concern from foreign business and rights groups.

The legislation, passed by China’s largely rubber-stamp parliament and set to come into effect in June 2017, is an “objective need” of China as a major internet power, a parliament official said.

Read more

Google has built machine learning systems that can create their own cryptographic algorithms — the latest success for AI’s use in cybersecurity. But what are the implications of our digital security increasingly being handed over to intelligent machines?

Google Brain, the company’s California-based AI unit, managed the recent feat by pitting neural networks against each other. Two systems, called Bob and Alice, were tasked with keeping their messages secret from a third, called Eve. None were told how to encrypt messages, but Bob and Alice were given a shared security key that Eve didn’t have access too.

ai-cybersecurity-7

In the majority of tests the pair fairly quickly worked out a way to communicate securely without Eve being able to crack the code. Interestingly, the machines used some pretty unusual approaches you wouldn’t normally see in human generated cryptographic systems, according to TechCrunch.

Read more

Whenever cybersecurity is discussed, the topic of biometric authentication rises alongside it as a better, more effective, more secure method of security. But is it? Do biometrics actually provide a safer way to complete purchase transactions online?

“Biometrics are a device-specific authentication method,” said Madeline Aufseeser, CEO of online fraud prevention company Tender Armor, of the ways biometric authentication is presently used to secure a digital purchase transaction (as opposed to logging into a bank’s web site, to view an account or transfer money). “Typically the same biometric method does not work across multiple purchasing channels today. The fingerprint used to make a purchase with a smartphone cannot necessarily be used to authenticate a phone order purchase or purchase made with a computer. When you confirm [a purchase transaction] with your fingerprint on a smartphone, all that’s saying is that’s the same fingerprint that’s allowed to use this phone, or the specific application on the phone. Because the fingerprint is only resident and stored on the phone, the phone is authenticating itself, not the cardholder conducting the transaction.”

This sounds a little odd compared to what we might have heard about the capabilities of biometrics previously, mainly because it goes against a core assumption: that a biometric identifier (like a fingerprint) goes with transactional data, from the phone or device, to the payment processor, to the merchant.

Read more