Toggle light / dark theme

Engineers take first step toward flexible, wearable, tricorder-like device

Engineers at the University of California San Diego have developed the first flexible wearable device capable of monitoring both biochemical and electric signals in the human body. The Chem-Phys patch records electrocardiogram (EKG) heart signals and tracks levels of lactate, a biochemical that is a marker of physical effort, in real time. The device can be worn on the chest and communicates wirelessly with a smartphone, smart watch or laptop. It could have a wide range of applications, from athletes monitoring their workouts to physicians monitoring patients with heart disease.

Nanoengineers and electrical engineers at the UC San Diego Center for Wearable Sensors worked together to build the device, which includes a flexible suite of sensors and a small electronic board. The device also can transmit the data from biochemical and electrical signals via Bluetooth.

Nanoengineering professor Joseph Wang and electrical engineering professor Patrick Mercier at the UC San Diego Jacobs School of Engineering led the project, with Wang’s team working on the patch’s sensors and chemistry, while Mercier’s team worked on the electronics and data transmission. They describe the Chem-Phys patch in the May 23 issue of Nature Communications.

Top international award for UNSW Australia quantum computing chief

Love this; Congrats to Michelle Simmons and her work on QC — Superstar females in STEM.


For her world-leading research in the fabrication of atomic-scale devices for quantum computing, UNSW Australia’s Scientia Professor Michelle Simmons has been awarded a prestigious Foresight Institute Feynman Prize in Nanotechnology.

Two international Feynman prizes, named in honour of the late Nobel Prize winning American physicist Richard Feynman, are awarded each year in the categories of theory and experiment to researchers whose work has most advanced Feynman’s nanotechnology goal of molecular manufacturing.

Professor Simmons, director of the UNSW-based Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, won the experimental prize for her work in “the new field of atomic-electronics, which she created”.

ILLUSIO to Present at 2016 Virtual Reality Summit in Seoul, South Korea

AR for plastic surgery.


ILLUSIO, the next generation in computer imaging for plastic surgery, will be presenting at the 2016 Virtual Reality Summit in Seoul, South Korea on June 22. The conference is expected to attract thousands of people interested in the latest applications for virtual reality and augmented reality.

ILLUSIO CEO Ethan Winner will present the Company’s use of augmented reality for plastic surgery imaging. ILLUSIO combines the latest in 3D augmented reality technology with real-time morphing animation, providing a platform for plastic surgeons and their patients to visually communicate.

The proprietary artistic adapters and deformers allow surgeons to easily manipulate virtual breast models to quickly replicate any real life breast characteristics. Patients can now see themselves and their future bodies in real time. With the ILLUSIO imaging system, she can turn side-to-side and in real-time see herself with all of the size and shape options that her surgeon creates…

A Battery Made From Metal and Air Is Electrifying the Developing World

Got to luv this.


Is this brand new type of battery the key to clean energy and off-grid electricity?

Lithium-ion batteries are having a moment. After becoming the de facto battery in laptops and cell phones over the years, they’re now starting to power electric cars (like those made by Tesla) and plug into the power grid.

But lithium-ion batteries aren’t the only battery type in town. Some brand new battery varieties could actually be more promising than lithium-ion when it comes to storing energy generated by solar panels or used to power remote villages in Africa, India, and Asia.

UltraMemory Turns to NanoSpice, NanoSpice Giga From ProPlus Design Solutions for Design of Super-Broadband, Large-Scale Memory

Nice.


/EINPresswire.com/ — SAN JOSE, CA — (Marketwired) — 05/24/16 — UltraMemory Inc. (UltraMemory) has selected NanoSpice™ and NanoSpice Giga™ from ProPlus Design Solutions, Inc., the leading technology provider of giga-scale parallel SPICE simulation, SPICE modeling solutions and Design-for-Yield (DFY) applications, to simulate its super-broadband, super large-scale memory design.

UltraMemory is developing innovative 3D DRAM chip, which includes Through Chip Interface (TCI), enabling low-cost and low-power wireless communication between stacked DARM when compared to TSV technology.

Highly accurate and high-capacity SPICE simulation was necessary because it needed to simulate several DRAM chips with analog functions. UltraMemory’s decision to adopt NanoSpice, a high-performance parallel SPICE simulator, and NanoSpice Giga, the industry’s only GigaSpice simulator, came after an extensive evaluation of commercial SPICE and FastSPICE circuit simulators. NanoSpice and NanoSpice Giga have been integrated in UltraMemory’s existing design flows to replace other SPICE and FastSPICE simulators to provide full circuit simulation solutions from small block simulation to full-chip verification.

Neuron-Based Chips Will Soon Become Commonplace, This Startup Founder Says

What does it mean to be alive? This question has been haunting us since the beginning of time. Thousands if not millions of novelists, philosophers, scientists have tried to answer.

However, for practical purposes, you don’t really need to know: you just live. You just learn to move in this world according to a certain set of rules, and as long as they work, you keep going.

All things considered this is not much different to the approach to brain-like computers that a Newark, California, based startup named Koniku is taking. Most of the experiments in this field are focused on trying to understand and replicate the infinite complexity of the brain using artificial methods, or on creating interfaces that connect the physical world with machines.

New method to control quantum systems

Yesterday, we saw the news from D-Wave in development & release of a new scalable QC. Now, Dartmouth has been able to develop a method to design faster pulses, offering a new way to accurately control quantum systems.


Dartmouth College researchers have discovered a method to design faster pulses, offering a new way to accurately control quantum systems.

The findings appear in the journal Physical Review A.

Quantum physics defines the rules that govern the realm of the ultra-small — the atomic and sub-atomic world — which explains the behavior of matter and its interactions. Scientists have been trying to exploit the seemingly strange properties of this quantum world to build practical devices, such as ultra-fast computers or ultra-precise quantum sensors. Building a practical device, however, requires accurately controlling your device to make it do what you want. This turns out to be challenging since quantum properties are very fragile.

/* */