Toggle light / dark theme

Pairing nanodiamonds with other nanomaterials could enable huge advances in nanotechnology

Very promising. I imagine 3D Printers being able to create synthesize diamonds will be a very profitable business to get in to because of the stabilizing benefits that the nanodiamonds bring to Quantum Computing and nanotechnology in general.


Nanomaterials have the potential to improve many next-generation technologies. They promise to speed up computer chips, increase the resolution of medical imaging devices and make electronics more energy efficient. But imbuing nanomaterials with the right properties can be time consuming and costly. A new, quick and inexpensive method for constructing diamond-based hybrid nanomaterials could soon launch the field forward.

University of Maryland researchers developed a method to build diamond-based hybrid nanoparticles in large quantities from the ground up, thereby circumventing many of the problems with current methods. The technique is described in the June 8, 2016 issue of the journal Nature Communications (“Nanostructures for Coupling Nitrogen-Vacancy Centers to Metal Nanoparticles and Semiconductor Quantum Dots”).

electron microscope image shows a hybrid nanoparticle consisting of a nanodiamond (roughly 50 nanometers wide)  covered in smaller silver nanoparticles

This electron microscope image shows a hybrid nanoparticle consisting of a nanodiamond (roughly 50 nanometers wide) covered in smaller silver nanoparticles that enhance the diamond’s optical properties. (Image: Min Ouyang)

Our Skynet Moment: Debating Morality Of AI – Analysis

The rapid growth of artificial intelligence (AI) has serious implications for our future. The issues and their oversight are not just the domain of computer engineers, technologists and AI experts. Policymakers, Smart Nation experts and security officials too should come together with them to ponder implications and set out the parameters, if needed, for future research and development.

By Shashi Jayakumar(

In March this year, AlphaGo, a machine created by Google’s artificial intelligence (AI) arm, DeepMind, trounced Lee Sedol, a grandmaster at Go, the ancient Chinese game. AlphaGo used cutting-edge AI to beat a player acknowledged to be one of the greatest ever.

Security experts wary of the Pentagon’s new microchip supplier

To provide computing power for the U.S. arsenal of advanced weaponry, satellites and information systems, the Pentagon has entered into a seven-year deal with Globalfoundries Inc, an Abu Dhabi-owned microchip manufacturer.

The move serves to diversify the Defense Department’s microchip supply chain — an issue of particular concern for some defense officials — which has been dominated by a short list of sellers led by IBM for over a decade.

A microchip is a small, wafer-thin semiconductor used to relay information through an electrical grid, thereby making an integrated circuit. Almost every modern digital device is chock-full of microchips.

Want to know what the future of medical invention looks like? Read on

Medical/ Biocomputing will only continue to grow and advance as a result of the demand for more improved experiences by consumers and business in communications and entertainment, food, home life, travel, business, etc.

Today, we have seen early opportunities and benefits with 3D printing, BMI, early stage Gene/ Cell circuitry and computing. In the future, we will see these technologies more and more replaced by even more advance Biocomputing and gene circuitry technology that will ultimately transform the human experiences and quality of life that many like to call Singularity.


Printing technology has come a long way from screechy dot-matrix printers to 3D printers which can print real life objects from metals, plastics, chemicals and concrete. While, at first, 3D printers were being used to create just basic shapes with different materials, more recently, they have been used to create advanced electronics, bio-medical devices and even houses.

Aircraft manufacturer Airbus recently showcased the world’s first 3D-printed mini aircraft, Thor, at the International Aerospace Exhibition and Air Show in Berlin. Although Airbus and its competitor have been using 3D-printed parts for their bigger assemblies, recent attempt shows that aviation may be ready for a new future with much lighter and cheaper planes given 3D printing not only cuts down the costs with less wastage, it also makes the plane lighter, thereby making them faster and more fuel efficient. But planes and toys is not what 3D printing might be restricted to; though in the elementary stage at the moment, the technology is being used for creating complex electronics like phones and wearables and may be able to reduce costs for manufacturers like Samsung and Apple.

One of the most important uses for the technology comes in the field of medical sciences. While pharma companies have been working on producing medicines from 3D printers, with one winning approval from the US’s Food and Drug Administration earlier this year, the technology is also being used to create bones, cartilages and customisable prosthetic limbs. But the real test for the technology lies in bioprinting—creating living cells via a 3D printer. Doctors have been using 3D printed organs to practice on, but scientists at research institutes have been experimenting with printing stem cells, skin tissue, organs and DNA. Though this is still decades from being a reality, printing of regenerative tissues can help cure heart ailments. 3D printing is also helping in construction, with a printer being used to create the first office space in Dubai using concrete blocks. The city aims that 25% of its buildings will be 3D printed by 2030.

A former NASA chief just launched this AI startup to turbocharge neural computing

Good for him.


A new company launched Monday by former NASA chief Dan Goldin aims to deliver a major boost to the field of neural computing.

KnuEdge’s debut comes after 10 years in stealth; formerly it was called Intellisis. Now, along with its launch, it’s introducing two products focused on neural computing: KnuVerse, software that focuses on military-grade voice recognition and authentication, and KnuPath, a processor designed to offer a new architecture for neural computing.

“While at NASA I became fascinated with biology,” said Goldin in an interview last week. “When the time came to leave NASA, I decided the future of technology would be in machine intelligence, and I felt a major thrust had to come from inspiration from the mammalian brain.”

Quantum Computing And How You Can Get Involved Now

Change is coming; will you be ready?
I remember many decades ago when folks were trying to learn a new OS that changed businesses, governments/ educational institutions, and households around the world. That OS was called Windows; and hearing the stories as well as watching people try to use a PC and a mouse was interesting then.

Now, the world will again go through a large scale metamorphosis again when more and more QC is evolved and made available over the next 5 to 7 years in the technology mainstream. Change is often necessary and often can be good as well.


You might ask yourself, “What is quantum computing, and how do I get involved?”

Before we begin to explain quantum computing, a brief glimpse of the past is essential to understand how quantum computing came to be.

From our very first laptop to the laptops we have today, it is clear that technology is exponentially advancing faster than our expectations. Phones and computers get thinner and faster, but why? Thanks to the effects of Moore’s Law, which states that the number of transistors in a dense circuit will double approximately every two years, the amount of “stuff” needed to be put on a board is more densely packed.

Microsoft gives millions to fund quantum computing research at Purdue

Change is coming; and Microsoft will be there.


With funding from Microsoft, a Purdue research team known as ‘Station Q Purdue’ will research potential methods of quantum computing.

“In order to see if these ideas that (Microsoft) has are realistic, whether they can be experimentally verified and then put to use, (Microsoft) has teamed up with certain experimentalists around the world,” said professor Michael Manfra, the director of Station Q Purdue.

Microsoft’s quantum computing research is done under their own Microsoft Station Q. Station Q Purdue is part of the network of other Station Q research teams that Microsoft has established internationally to study potential methods of quantum computing.