Toggle light / dark theme

Researchers grow needle- and thread-like diamonds

Excellent breakthrough for technology’s future.


Example of diamond crystallites of different shapes, obtained with the help of the technology, worked out in the Lomonosov Moscow State University. There are electron microscopy images of diamond films’ fragments after their oxidation in the air. The material left after the oxidation is represented by needle-like diamond monocrystals of pyramid shape. Credit: Alexander Obraztsov.

Physicists from the Lomonosov Moscow State University have obtained micrometer-sized diamond crystals in the form of a regular pyramid. In cooperation with co-workers from other Russian and foreign research centers, they have also studied the luminescence and electron emission properties of these diamond crystals. The research results have been published in a series of articles in journals including Scientific Reports.

The researchers have described structural peculiarities of micrometer-sized diamond crystals in needle- and thread-like shapes, and their interrelation with luminescence features and field electron emission efficiency. The luminescence properties of such thread-like diamond crystals could be useful in different types of sensors, quantum optical devices, and also for quantum computing.

Quantum Computing and why we need to replace the Internet

More believers; loving it!


Video by: Jan-Henrik Kulberg

As we continue to conduct more of our transactions online, consumers, companies and governments put their faith in encryption to protect their private and sensitive data. Once quantum computing becomes a reality, our current encryption methods will quickly become obsolete as quantum computers will be able to easily crack them.

With companies and governments investing heavily in quantum computing, it seems that a fully functioning quantum computer will become a reality in the not too distant future. A machine like that would have no problem cracking the encryption methods used across the Internet today.

Quantum computers will make today’s internet insecure. Therefore, we should consider replacing the current infrastructure now according to Dr. Vadim Makarov. He heads the Quantum Hacking Lab at the Institute for Quantum Computing at the University of Waterloo in Canada.

Elon Musk gets closer to worldwide internet dream (and all for the same price)

Entrepreneur’s Space X agency files request for $10bn project with the FCC and says internet speeds globally will reach 1Gb/s.

The man who wants to take humans to Mars also wants to connect the whole of planet Earth and bring digital equality across the globe.

Elon Musk’s Space X spacial agency has requested to the US Federal Communications Commission (FCC) authorisation to launch 4,425 satellites which would be used to provide connectivity to the more than 7.2 billion humans on Earth.

Organ-on-chips platform has promise for quicker, cheaper pharmaceutical research

Research from Linda Griffith’s laboratory group at MIT will be presented at SPIE Photonics West 2017.

The traditional path for most drugs is to start in a petri dish containing a single cell tissue culture, move to small animals such as rodents then on to primates, and finally on to clinical trials in humans. Along the path, every step could encounter results that deem the drug a failure and not suitable for the desired outcome.

Microsoft patents Holodeck-style projection room

The HoloLens field of view issue has been preoccupying Microsoft for some time, and they have been exploring a number of solutions, which tend to show up in their patent filings.

As Microsoft writes:

This discussion relates to complementary augmented reality. An augmented reality experience can include both real world and computer-generated content. For example, head-mounted displays (HMDs) (e.g., HMD devices), such as optically see-through (OST) augmented reality glasses (e.g., OST displays), are capable of overlaying computer-generated spatially-registered content onto a real world scene.

Biology’s ‘breadboard’

Nice; using gene regulatory protein from yeast as a method for reducing the work required for making cell-specific perturbations.


The human brain, the most complex object in the universe, has 86 billion neurons with trillions of yet-unmapped connections. Understanding how it generates behavior is a problem that has beguiled humankind for millennia, and is critical for developing effective therapies for the psychiatric disorders that incur heavy costs on individuals and on society. The roundworm C elegans, measuring a mere 1 millimeter, is a powerful model system for understanding how nervous systems produce behaviors. Unlike the human brain, it has only 302 neurons, and has completely mapped neural wiring of 6,000 connections, making it the closest thing to a computer circuit board in biology. Despite its relative simplicity, the roundworm exhibits behaviors ranging from simple reflexes to the more complex, such as searching for food when hungry, learning to avoid food that previously made it ill, and social behavior.

Understanding how this dramatically simpler nervous system works will give insights into how our vastly more complex brains function and is the subject of a paper published on December 26, 2016, in Nature Methods.

Experts split on how soon quantum computing is coming, but say we should start preparing now

Let’s say closer to 7yrs or less.


Whether quantum computing is 10 years away — or is already here — it promises to make current encryption methods obsolete, so enterprises need to start laying the groundwork for new encryption methods.

A quantum computer uses qubits instead of bits. A bit can be a zero or a one, but a qubit can be both simultaneously, which is weird and hard to program but once folks get it working, it has the potential to be significantly more powerful than any of today’s computers.

And it will make many of today’s public key algorithms obsolete, said Kevin Curran, IEEE senior member and a professor at the University of Ulster, where he heads up the Ambient Intelligence Research Group.

Electron-photon small-talk could have big impact on quantum computing

In a step that brings silicon-based quantum computers closer to reality, researchers at Princeton University have built a device in which a single electron can pass its quantum information to a particle of light. The particle of light, or photon, can then act as a messenger to carry the information to other electrons, creating connections that form the circuits of a quantum computer.

The research, published in the journal Science and conducted at Princeton and HRL Laboratories in Malibu, California, represents a more than five-year effort to build a robust capability for an electron to talk to a , said Jason Petta, a Princeton professor of physics.

“Just like in human interactions, to have good communication a number of things need to work out—it helps to speak the same language and so forth,” Petta said. “We are able to bring the energy of the electronic state into resonance with the light particle, so that the two can talk to each other.”