Toggle light / dark theme

We spend our lives surrounded by high-tech materials and chemicals that make our batteries, solar cells and mobile phones work. But developing new technologies requires time-consuming, expensive and even dangerous experiments.

Luckily we now have a secret weapon that allows us to save time, money and risk by avoiding some of these experiments: computers.

Thanks to Moore’s law and a number of developments in physics, chemistry, computer science and mathematics over the past 50 years (leading to Nobel Prizes in chemistry in 1998 and 2013) we can now carry out many experiments entirely on computers using modeling.

Read more

On the path towards Singularity — I believe that this is an individual choice. However, to remain relevant and competitive in industry we may see a day when folks will require this type of enhancement to compete, perform in military operations, etc.


The researchers carried out a survey of more than 4,700 US adults.

The survey asked the public on views of gene editing, implantation of brain chips, and transfusions of synthetic blood.

More said they would not want enhancements of their brains and their blood: 66 per cent and 63 per cent, respectively, than said they would want them — 32 per cent and 35 per cent.

Read more

Abstract: We prove a lower bound on the information leakage of any classical protocol.

Computing the equality function in the simultaneous message passing (SMP) model. Our bound is valid in the finite length regime and is strong enough to demonstrate a quantum advantage in terms of information leakage for practical quantum protocols. We prove our bound by obtaining an improved finite size version of the communication bound due to Babai and Kimmel, relating randomized.

Communication to deterministic communication in the SMP model. We then relate. information leakage to randomized communication through a series of reductions.

We first provide alternative characterizations for information leakage, allowing us to link it to average length communication while allowing for. shared randomness (pairwise, with the referee). A Markov inequality links this.

With bounded length communication, and a Newman type argument allows us to go from shared to private randomness. The only reduction in which we incur more.

Read more

The public was unenthusiastic on all counts, even about protecting babies from disease.


Americans aren’t very enthusiastic about using science to enhance the human species. Instead, many find it rather creepy.

A new survey by the Pew Research Center shows a profound distrust of scientists, a suspicion about claims of progress and a real discomfort with the idea of meddling with human abilities. The survey also opens a window into the public’s views on what it means to be a human being and what values are important.

Pew asked about three techniques that might emerge in the future but that are not even close to ready now: using gene editing to protect babies from disease, implanting chips in the brain to improve people’s ability to think, and transfusing synthetic blood that would enhance performance by increasing speed, strength and endurance.

Read more

Age of Quantum Bit.


In computers of the future, information might be stored in the form of quantum bits. But how can a quantum bit be realized?

A research team from Germany, France and Switzerland has realized quantum bits, short qubits, in a new form. One day, they might become the information units of quantum computers.

To date, researchers have realized qubits in the form of individual electrons. However, this led to interferences and rendered the information carriers difficult to programme and read. The group has solved this problem by utilising electron holes as qubits, rather than electrons.

Read more

Physicists from MIPT and the Russian Quantum Center have developed a method which is going to make it easier to create a universal quantum computer — they have discovered a way of using multilevel quantum systems (qudits), each one of which is able to work with multiple “conventional” quantum elements — qubits.

Professor Vladimir Man’ko, Scientific Supervisor of MIPT’s Laboratory of Quantum Information Theory and member of staff at the Lebedev Physical Institute, Aleksey Fedorov, a member of staff at the Russian Quantum Center, and his colleague Evgeny Kiktenko published the results of their studies of multilevel quantum systems in a series of papers in Physical Review A, Physics Letters A, and also Quantum Measurements and Quantum Metrology.

Read more