Toggle light / dark theme

Computer modeling brings simple, efficient rocket engine closer to reality

Engineers at the University of Washington are working on a new type of rocket engine that holds the promise of being lighter, more efficient, and simpler to make than conventional liquid-fuel rockets. Called a Rotational Detonation Engine (RDE), one of the biggest hurdles to making it practical is to develop mathematical models that can describe how the very unpredictable engine design works in order to make it more stable.

An RDE is a rocket engine that is similar to the pulse jet engines that powered the infamous German V1 cruise missile of the Second World War, which used a simple combustion chamber with an exhaust pipe at one end and spring-mounted slats on the front face. In operation, air would come in through the slats, mix with fuel, which was then detonated, producing a pulse of thrust. An RDE takes this idea one step further.

“A rotating detonation engine takes a different approach to how it combusts propellant,” says James Koch, a UW doctoral student in aeronautics and astronautics. “It’s made of concentric cylinders. Propellant flows in the gap between the cylinders, and, after ignition, the rapid heat release forms a shock wave, a strong pulse of gas with significantly higher pressure and temperature that is moving faster than the speed of sound.

How Bionic Limbs Are Changing Lives | VICE on HBO

A bionic revolution is brewing, as recent advancements in bioengineering have brought about scientific breakthroughs in rehabilitation for people with disabilities. The most cutting edge research is happening inside the human brain, where implanted technology allows people to communicate directly with computers, using their thoughts.

VICE’s Wilbert L. Cooper travels to Zurich to see the first-ever bionic Olympics and discovers a host of technologies that are expanding what it means to be human.

Check out VICE News for more: http://vicenews.com
Follow VICE News here:
Facebook: https://www.facebook.com/vicenews
Twitter: https://twitter.com/vicenews
Tumblr: http://vicenews.tumblr.com/
Instagram: http://instagram.com/vicenews
More videos from the VICE network: https://www.fb.com/vicevideo
#VICEonHBO

T-MUSIC Selects Performers to Develop Integrated Mixed-Mode RF Electronics in Onshore Foundries

Today’s defense electronics systems rely on radio frequency (RF) mixed-mode electronics – those that integrate RF, analog, and digital circuits onto a single chip – to interface RF signals with digital processors. This technology supports critical communications, radar, and electronic warfare (EW) capabilities, as well as being widely used to support commercial telecommunications. The Department of Defense (DoD) has capability demands that far exceed the requirements of the commercial world in terms of speed, fidelity, capacity, and precision. Current commercial RF mixed-mode systems on a chip (SoCs) are implemented on digital complementary metal oxide semiconductor (CMOS) platforms, a technology that has been used for decades to construct integrated circuits, highly integrated transceivers, microprocessors, and beyond. Despite continued advancement and scaling along the trajectory of Moore’s Law for high integration density, these CMOS platforms are unable to support operations at higher frequencies with larger signal bandwidths and higher resolutions, essentially limiting their use in next-generation mixed-mode interfaces needed for emerging defense RF applications.

To advance RF mixed-mode interfaces beyond current limitations, DARPA established the Technologies for Mixed-mode Ultra Scaled Integrated Circuits (T-MUSIC) program. T-MUSIC was first announced in January 2019 as a part of the second phase of DARPA’s Electronics Resurgence Initiative (ERI). One area of research under ERI Phase II focuses on the integration of photonics and RF components directly into advanced circuits and semiconductor manufacturing processes, enabling unique and differentiated domestic manufacturing capabilities. As such, T-MUSIC will explore the integration of mixed-mode electronics into advanced onshore semiconductor manufacturing processes. The goal is to develop highly integrated RF electronics with an unprecedented combination of wide spectral coverage, high resolution, large dynamic range, and high information processing bandwidth.

The view of quantum threats – from the front lines

Quantum computing might initially sound like a far-fetched futuristic idea, but companies such as Amazon, Google, and IBM are putting their weight behind it and preparations have begun. With quantum computing potentially within our reach, what will happen to our current security models and modern-day encryption? See what security experts are doing to prepare for quantum threats.

The future is here. Or just about. After a number of discoveries, researchers have proven that quantum computing is possible and on its way. The wider world did not pause long on this discovery: Goldman Sachs, Amazon, Google, and IBM have just announced their own intentions to embark on their own quantum developments.

Now that it’s within our reach we have to start seriously considering what that means in the real world. Certainly, we all stand to gain from the massive benefits that quantum capabilities can bring, but so do cybercriminals.

Why Quantum Computing Gets Special Attention In The Trump Administration’s Budget Proposal

Competition between the U.S. and China in quantum computing revolves, in part, around the role such a system could play in breaking the encryption that makes things secure on the internet.

Truly useful quantum computing applications could be as much as a decade away, Aaronson says. Initially, these tools would be highly specialized.

“The way I put it is that we’re now entering the very, very early, vacuum-tube era of quantum computers,” he says.

Berkeley Lab to Tackle Particle Physics with Quantum Computing

Massive-scale particle physics produces correspondingly large amounts of data – and this is particularly true of the Large Hadron Collider (LHC), the world’s largest particle accelerator, which is housed at the European Organization for Nuclear Research (CERN) in Switzerland. In 2026, the LHC will receive a massive upgrade through the High Luminosity LHC (HL-LHC) Project. This will increase the LHC’s data output by five to seven times – billions of particle events every second – and researchers are scrambling to prepare big data computing for this deluge of particle physics data. Now, researchers at Lawrence Berkeley National Laboratory are working to tackle high volumes of particle physics data with quantum computing.

When a particle accelerator runs, particle detectors offer data points for where particles crossed certain thresholds in the accelerator. Researchers then attempt to reconstruct precisely how the particles traveled through the accelerator, typically using some form of computer-aided pattern recognition.

This project, which is led by Heather Gray, a professor at the University of California, Berkeley, and a particle physicist at Berkeley Lab, is called Quantum Pattern Recognition for High-Energy Physics (or HEP.QPR). In essence, HEP.QPR aims to use quantum computing to speed this pattern recognition process. HEP.QPR also includes Berkeley Lab scientists Wahid Bhimji, Paolo Calafiura and Wim Lavrijsen.

The Techno-Human Shell – A Jump in the Evolutionary Gap

It is in this second phase when Darwinian evolutionary rivers will merge with the rivers of intelligent designers, represented by scientists, programmers and engineers, who will fuse organic natural biology, synthetic biology, and digital technology into a unified whole that future generations will deem their anatomy. The merger will serve to afford greater intelligence and, longer, healthier lives. In exchange, we will relinquish actual autonomy for apparent autonomy, where what was once considered “free will” will be supplanted by the deterministic logic of machinery somewhere in the mainstream of our unconscious.

Although in-the-body technology will have an explosive effect on commerce, entertainment, and employment, in the near term the concentration will be on medical devices, such as the innocuous pacemaker (essentially a working silicon-based computer, with sensors, memories, and a stimulation device with telecommunications to the outer world). In a second epoch, these devices will be gradually down-sized by advances in synthetic DNA, molecular- and nano-sized processors, each deployed alongside and within cells and organs as permanent non-organic, internal adjuncts to our anatomy for use as: nano-prosthetics, nano-stimulators/suppressors, artificial organ processors, metabolic and cognitive enhancers, and permanent diagnostic tools to ensure our physical and psychological well-being as we head toward a practically interminable lifetime.[6]

Will a wide-spread practice of installing technology into the body fundamentally change human essence? Our sense of self-sufficiency, authenticity, or individual identity? Will it change that numerical identity, the one “I” as some static aspect of ourselves (as self-consciousness as idealized by Locke)? Or will it change our narrative identity, our unseen internal human form, to eventually redefine what it means to be human?[7].

The New Horizons spacecraft just revealed secrets of the most distant object we’ve ever visited

Now, five years later, their gamble appears to have paid off. Not only did New Horizons achieve a next-to flawless flyby of Arrokoth, the most distant object ever visited, but buried in its gigabytes of data—which have been trickling back to Earth ever since the New Year’s Day 2019 rendezvous—lies empirical evidence that strikes against a classic theory of how planets form. The New Horizons team published their latest analysis of the ancient body and how it came to be in a trio of papers appearing in Science last week.

/* */