Toggle light / dark theme

Biologist Dan Gibson edits and programs DNA, just like coders program a computer. But his “code” creates life, giving scientists the power to convert digital information into biological material like proteins and vaccines. Now he’s on to a new project: “biological transportation,” which holds the promise of beaming new medicines across the globe over the internet. Learn more about how this technology could change the way we respond to disease outbreaks and enable us to download personalized prescriptions in our homes.

Read more

Synthetic biologists are the computer programmers of biology. Their code? DNA.

The whole enterprise sounds fantastical: you insert new snippets of DNA code—in the form of a chain of A, T, C, G letters—into an organism, and bam! Suddenly you have bacteria that can make anti-malaria drugs or cells that can solve complicated logic problems like a computer.

Except it’s not that simple. The basis of synthetic biology is DNA—often a lot of it, in the form of many genes. Making an average gene from scratch costs several hundreds of dollars and weeks of time. Imagine a programmer taking a month to type a new line of code, and you’ll likely understand a synthetic biologist’s frustration.

Read more

Medical X-ray scans have long been stuck in the black-and-white, silent-movie era. Sure, the contrast helps doctors spot breaks and fractures in bones, but more detail could help pinpoint other problems. Now, a company from New Zealand has developed a bioimaging scanner that can produce full color, three dimensional images of bones, lipids, and soft tissue, thanks to a sensor chip developed at CERN for use in the Large Hadron Collider.

Mars Bioimaging, the company behind the new scanner, describes the leap as similar to that of black-and-white to color photography. In traditional CT scans, X-rays are beamed through tissue and their intensity is measured on the other side. Since denser materials like bone attenuate (weaken the energy) of X-rays more than soft tissue does, their shape becomes clear as a flat, monochrome image.

Read more

Thousands of people in Sweden have inserted microchips, which can function as contactless credit cards, key cards, and even rail cards, into their bodies. Once the chip is underneath your skin, there is no longer any need to worry about misplacing a card or carrying a heavy wallet. But for many people, the idea of carrying a microchip in their body feels more dystopian than practical.

Some have suggested that Sweden’s strong welfare state may be the cause of this recent trend. But actually, the factors behind why roughly 3,500 Swedes have had microchips implanted in them are more complex than you might expect. This phenomenon reflects Sweden’s unique biohacking scene. If you look underneath the surface, Sweden’s love affair with all things digital goes much deeper than these microchips.

Read more

Transistors are tiny switches that form the bedrock of modern computing; billions of them route electrical signals around inside a smartphone, for instance.

Quantum computers will need analogous hardware to manipulate quantum information. But the design constraints for this new technology are stringent, and today’s most advanced processors can’t be repurposed as quantum devices. That’s because quantum information carriers, dubbed qubits, have to follow different rules laid out by quantum physics.

Scientists can use many kinds of quantum particles as qubits, even the photons that make up . Photons have added appeal because they can swiftly shuttle information over long distances, and they are compatible with fabricated chips. However, making a quantum transistor triggered by light has been challenging because it requires that the photons interact with each other, something that doesn’t ordinarily happen on its own.

Read more

Diamonds are prized for their purity, but their flaws might hold the key to a new type of highly secure communications.

Princeton University researchers are using to help create a communication network that relies on a property of subatomic particles known as their quantum state. Researchers believe such quantum information networks would be extremely secure and could also allow new quantum computers to work together to complete problems that are currently unsolvable. But scientists currently designing these networks face several challenges, including how to preserve fragile quantum information over long distances.

Now, researchers have arrived at a possible solution using synthetic diamonds.

Read more

Fascinating findings: “1. Neurofeedback yields significant reductions in parent ratings of inattentive and hyperactive-impulsive symptoms. 2. These reductions persist for up to 2–12 months after neurofeedback ends. 3. Although medication has a larger initial effect, symptom reductions resulting from neurofeedback and medication may be comparable over a more extended time period.”


In neurofeedback treatment for ADHD, individuals learn to alter their typical pattern of brainwave activity, i.e., EEG activity, to one that is consistent with a focused and attentive state.

This is done by collecting EEG data from individuals as they focus on stimuli presented on a computer screen. Their ability to control the stimuli, e.g., keeping the smile on a smiley face keeping a video playing, depends on their maintaining an EEG state that reflects focused attention.

Over time, most individuals better at this. Supporters of neurofeedback argue that learning to alter EEG activity and focus better during training eventually generalizes to real-world tasks that require strong attention skills, e.g., reading, homework, etc.

In terms of moral, social, and philosophical uprightness, isn’t it striking to have the technology to provide a free education to all the world’s people (i.e. the Internet and cheap computers) and not do it? Isn’t it classist and backward to have the ability to teach the world yet still deny millions of people that opportunity due to location and finances? Isn’t that immoral? Isn’t it patently unjust? Should it not be a universal human goal to enable everyone to learn whatever they want, as much as they want, whenever they want, entirely for free if our technology permits it? These questions become particularly deep if we consider teaching, learning, and education to be sacred enterprises.


When we as a global community confront the truly difficult question of considering what is really worth devoting our limited time and resources to in an era marked by global catastrophe, I always find my mind returning to what the Internet hasn’t really been used for yet — and what was rumored from its inception that it should ultimately provide — an utterly and entirely free education for all the world’s people.

In regard to such a concept, Bill Gates said in 2010:

“On the web for free you’ll be able to find the best lectures in the world […] It will be better than any single university […] No matter how you came about your knowledge, you should get credit for it. Whether it’s an MIT degree or if you got everything you know from lectures on the web, there needs to be a way to highlight that.”