Scientists have taken a step towards the creation of powerful devices that harness magnetic charge by creating the first ever three-dimensional replica of a material known as a spin-ice.
Spin ice materials are extremely unusual as they possess so-called defects which behave as the single pole of a magnet.
These single pole magnets, also known as magnetic monopoles, do not exist in nature; when every magnetic material is cut into two it will always create a new magnet with a north and south pole.
## SCIENCE ADVANCES • MAY 24, 2021 # *by Vienna University of Technology*
In everyday life, phase transitions usually have to do with temperature changes--for example, when an ice cube gets warmer and melts. But there are also different kinds of phase transitions, depending on other parameters such as magnetic field. In order to understand the quantum properties of materials, phase transitions are particularly interesting when they occur directly at the absolute zero point of temperature. These transitions are called "quantum phase transitions" or a "quantum critical points."
Such a quantum critical point has now been discovered by an Austrian-American research team in a novel material, and in an unusually pristine form. The properties of this material are now being further investigated.
It is suspected that the material could be a so-called Weyl-Kondo semimetal, which is considered to have great potential for quantum technology due to special quantum states (so-called topological states). If this proves to be true, a key for the targeted development of topological quantum materials would have been found.
This surprising result is probably related to the fact that the behavior of electrons in this material has some special features. "It is a highly correlated electron system. This means that the electrons interact strongly with each other, and that you cannot explain their behavior by looking at the electrons individually.
Soon, the majority of portable PCs won’t need to be equipped with an ugly barrel jack and a proprietary power brick to charge. The USB Implementers Forum (USB-IF) has just announced that it’s more than doubling the amount of power you can send over a USB-C cable to 240 watts, which means you’ll eventually be able to plug in the same kind of multipurpose USB-C cable you currently use on lightweight laptops, tablets, and phones to charge all but the beefiest gaming laptops.
The President of Estonia Kersti Kaljulaid at the Tartu University laboratory. Photo: Mattias Tammet / Office of the President of the Republic of Estonia.
As the world is running out of lithium, planet-friendlier batteries are waiting to hit the market. We are using up lithium, the essential metal in rechargeable batteries. Some experts estimate that there won’t be any lithium left by 2035, and some say that it may already disappear within four years. Who should lose sleep over this? Anyone with a smartphone, a laptop or an electric car. Without lithium, they would have to be plugged in at all times.
But it’s not just about comfort. Lithium also plays an important role in storing wind and solar energy, an increasingly important sector. Therefore, the world is in the midst of a battery revolution.
In the last few years, several technology companies including Google, Microsoft, and IBM, have massively invested in quantum computing systems based on microwave superconducting circuit platforms in an effort to scale them up from small research-oriented systems to commercialized computing platforms. But fulfilling the potential of quantum computers requires a significant increase in the number of qubits, the building blocks of quantum computers, which can store and manipulate quantum information.
But quantum signals can be contaminated by thermal noise generated by the movement of electrons. To prevent this, superconducting quantum systems must operate at ultra-low temperatures—less than 20 milli-Kelvin—which can be achieved with cryogenic helium-dilution refrigerators.
The output microwave signals from such systems are amplified by low-noise high-electron mobility transistors (HEMTs) at low temperatures. Signals are then routed outside the refrigerator by microwave coaxial cables, which are the easiest solutions to control and read superconducting devices but are poor heat isolators, and take up a lot of space; this becomes a problem when we need to scale up qubits in the thousands.
Seagate has been working toward developing a dual-actuator hard drive, meaning that the drive will contain two sets of independently controlled read/write heads. Now, after several years, the company has released its first functional dual-actuator hard drive, the Mach.2. Currently, only enterprises can purchase and use this product, meaning that at least for now, end users will have to wait their turn.
So far, Seagate has reported the Mach.2’s sequential, sustained transfer rate as up to 524MBps—over double the rate of a fast but generic rust disk, closer to the capacity seen in SATA SSD. In fact, this increased transfer rate carries over into input/output as well, featuring 304 IOPS read / 384 IOPS write and only 4.16 ms average latency. By contrast, normal hard drives usually run at 100/150 IOPS with about the same average latency.
Of course, all of that extra capacity requires additional power. Even while idle, the Mach.2 runs at 7.2 W, while Seagate’s standard Ironwolf line runs at 5 W while idle. That said, it is a bit easier to measure the power specs of Mach.2 than Ironwolf, as the former’s power use can be determined using several random input/output scenarios, as opposed to Ironwolf, whose power is gauged from its “average operating power,” a metric undefined by the Seagate data sheet reference.
The scale-free complexity associated with the biological system in general, and the neuron in particular, means that within each cell there is a veritable macromolecular brain, at least in terms of structural complexity, and perhaps to a certain degree functional complexity as well—a fractal hierarchy. This means that the extremely simplistic view of the synapse as a single digital bit is misrepresenting the reality of the situation—such as, if we were to utilize the parlance of the neurocomputational model, each ‘computational unit’ contains a veritable macromolecular brain within it. There is no computer or human technology yet equivalent to this.\.
A study published in the journal Science has upended 80 years of conventional wisdom in computational neuroscience that has modeled the neuron as a simple point-like node in a system, integrating signals and passing them along.