Toggle light / dark theme

The team, part of Surrey’s research program in the exciting new field of quantum biology, have shown that this modification in the bonds between the DNA strands is far more prevalent than has hitherto been thought. The protons can easily jump from their usual site on one side of an energy barrier to land on the other side. If this happens just before the two strands are unzipped in the first step of the copying process, then the error can pass through the replication machinery in the cell, leading to what is called a DNA mismatch and, potentially, a mutation.

In a paper published this week in the journal Communications Physics, the Surrey team based in the Leverhulme Quantum Biology Doctoral Training Center used an approach called open quantum systems to determine the physical mechanisms that might cause the protons to jump across between the DNA strands. But, most intriguingly, it is thanks to a well-known yet almost magical quantum mechanism called tunneling—akin to a phantom passing through a solid wall—that they manage to get across.


The molecules of life, DNA, replicate with astounding precision, yet this process is not immune to mistakes and can lead to mutations. Using sophisticated computer modeling, a team of physicists and chemists at the University of Surrey have shown that such errors in copying can arise due to the strange rules of the quantum world.

The two strands of the famous DNA double helix are linked together by called protons—the nuclei of atoms of hydrogen—which provide the glue that bonds molecules called bases together. These so-called are like the rungs of a twisted ladder that makes up the structure discovered in 1952 by James Watson and Francis Crick based on the work of Rosalind Franklin and Maurice Wilkins.

Normally, these DNA bases (called A, C, T and G) follow strict rules on how they bond together: A always bonds to T and C always to G. This strict pairing is determined by the molecules’ shape, fitting them together like pieces in a jigsaw, but if the nature of the hydrogen bonds changes slightly, this can cause the pairing rule to break down, leading to the wrong bases being linked and hence a mutation. Although predicted by Crick and Watson, it is only now that sophisticated computational modeling has been able to quantify the process accurately.

The future of astronomy goes far beyond the James Webb Space Telescope.

For example, it’s theoretically possible to use quantum computers as a means for constructing colossal, planet-sized telescopes, according to a study shared to a preprint server and initially reported by New Scientist.

And, if we could make it work, a planetary telescope would peer much farther into the big black abyssal depths of space, and image the distant universe at untold levels of resolution.

This article argues that consciousness has a logically sound, explanatory framework, different from typical accounts that suffer from hidden mysticism. The article has three main parts. The first describes background principles concerning information processing in the brain, from which one can deduce a general, rational framework for explaining consciousness. The second part describes a specific theory that embodies those background principles, the Attention Schema Theory. In the past several years, a growing body of experimental evidence—behavioral evidence, brain imaging evidence, and computational modeling—has addressed aspects of the theory. The final part discusses the evolution of consciousness. By emphasizing the specific role of consciousness in cognition and behavior, the present approach leads to a proposed account of how consciousness may have evolved over millions of years, from fish to humans. The goal of this article is to present a comprehensive, overarching framework in which we can understand scientifically what consciousness is and what key adaptive roles it plays in brain function.

A vulnerability in the domain name system (DNS) component of a popular C standard library that is present in a wide range of IoT products may put millions of devices at DNS poisoning attack risk.

A threat actor can use DNS poisoning or DNS spoofing to redirect the victim to a malicious website hosted at an IP address on a server controlled by the attacker instead of the legitimate location.

The library uClibc and its fork from the OpenWRT team, uClibc-ng. Both variants are widely used by major vendors like Netgear, Axis, and Linksys, as well as Linux distributions suitable for embedded applications.

Japanese researcher Makoto Kasu, at Saga University, and a precision diamond jewellery manufacturer have built a 2-inch diamond-coated wafer that can store, they claim, 25 exabytes of data using quantum memory.

Binary data is stored in quantum superpositions using nitrogen vacancies in the diamond material. Currently binary stored is stored as bits, with a value of one or zero, represented by magnetic polarity (north or south), charge in flash (current flows or not) or resistance in ReRAM (high or low). Quantum memory is different in that it stores qubits (quantum bits).

As we understand it, a qubit can have a value of ⎢0⟩ or⎢1⟩ (pronounced “ket 0” and “ket 1”) or a linear combination of both states in any proportion – it does not have a single value. It has a certain probability of being a ⎢0⟩ and another probability of being a ⎢1⟩. This property of a qubit is called superposition and is used in quantum computing, which can use other quantum phenomena such as entanglement and interference.

Decentralized finance is built on blockchain technology, an immutable system that organizes data into blocks that are chained together and stored in hundreds of thousands of nodes or computers belonging to other members of the network.

These nodes communicate with one another (peer-to-peer), exchanging information to ensure that they’re all up-to-date and validating transactions, usually through proof-of-work or proof-of-stake. The first term is used when a member of the network is required to solve an arbitrary mathematical puzzle to add a block to the blockchain, while proof-of-stake is when users set aside some cryptocurrency as collateral, giving them a chance to be selected at random as a validator.

To encourage people to help keep the system running, those who are selected to be validators are given cryptocurrency as a reward for verifying transactions. This process is popularly known as mining and has not only helped remove central entities like banks from the equation, but it also has allowed DeFi to open more opportunities. In traditional finance, are only offered to large organizations, for members of the network to make a profit. And by using network validators, DeFi has also been able to cut down the costs that intermediaries charge so that management fees don’t eat away a significant part of investors’ returns.