Toggle light / dark theme

There are plenty of gaming laptops on the market these days, but none quite fit the requirements of one [ParticularlyPippin]. Thus, they set out on building their own portable computer, ending up with a rig in a briefcase with a decidedly cyberpunk feel.

The design relies on desktop components, with the idea being to make a machine with better upgradability than a typical laptop. The briefcase itself is a nice deep-shell unit, and was given a wooden baseboard to hold all the components. It was then provided with standoffs and mountings for a Mini-ITX motherboard, as well as all the necessary add-ons like fans and storage. As in many odd-form-factor builds, a PCI-E riser cable comes in handy to hook up the GPU.

As for the user interface, a USB portable monitor is paired with a mechanical keyboard for the appropriate amount of clackity-clack when hacking out in the field. The icing on the cake, however, are the RGB strip backlights controlled via MSI’s software that really make the final result pop.

A new method of identifying gravitational wave signals using quantum computing could provide a valuable new tool for future astrophysicists.

A team from the University of Glasgow’s School of Physics & Astronomy have developed a to drastically cut down the time it takes to match gravitational wave signals against a vast databank of templates.

This process, known as matched filtering, is part of the methodology that underpins some of the gravitational wave signal discoveries from detectors like the Laser Interferometer Gravitational Observatory (LIGO) in America and Virgo in Italy.

In the new field of quantum computing, magnetic interactions could play a role in relaying quantum information.

In new research, Argonne scientists achieved efficient quantum coupling between two distant magnetic devices, which which may be useful for creating new quantum information technology devices — https://bit.ly/3uk88Q3

What do quantum computers have to do with smog-filled London streets, flying submarines, waistcoats, petticoats, Sherlock Holmesian mysteries, and brass goggles?

A whole lot, according to Nicole Yunger Halpern. Last week, the joined Jacob Barandes, co-director of graduate studies for physics, to discuss her new book, “Quantum Steampunk: The Physics of Yesterday’s Tomorrow.” In it, Yunger Halpern dissects a new branch of science—quantum thermodynamics, or quantum steampunk as she calls it—by fusing steampunk fiction with nonfiction and Victorian-era thermodynamics (the heat and energy that gets pumping) with . Yunger Halpern presents a whimsical lens through which readers can watch a “scientific revolution that’s happening in real time,” Barandes said, exploring mysteries even Holmes couldn’t hope to solve, such as why time flows in only one direction.

“This fusion of old and new creates a wonderful sense of nostalgia and adventure, romance and exploration,” Yunger Halpern said during a virtual Harvard Science Book Talk presented by the University’s Division of Science, Cabot Science Library, and Harvard Book Store. In steampunk, she continued, “fans dress up in costumes full of top hats and goggles and gears and gather at conventions. What they dream, I have the immense privilege of having the opportunity to live.”

Mojo Vision said it has created a new prototype of its Mojo Lens augmented reality contact lenses. This smart contact lens will bring “invisible computing” to life, the company believes.

The Mojo Lens prototype is a critical milestone for the company in its development, testing, and validation process, and is an innovation positioned at the intersection of smartphones, augmented reality/virtual reality, smart wearables, and health tech.

The prototype includes numerous new hardware features and technologies embedded directly into the lens — advancing its display, communications, eye tracking, and power system.

TEMPLE, Texas (KXAN) — Meta, formerly known as Facebook, is expanding its presence in Central Texas.

It plans to make an $800 million investment — this time outside of Austin. The company is creating a Hyperscale Data Center about an hour north of Austin in the city of Temple.

“We sort of jokingly, but not so jokingly call Temple the northern-most suburb of Austin,” said Tim Davis, the mayor of Temple.

Researchers uncovered new information about an important subatomic particle and a long-theorized fifth force of nature.


A group of researchers have used a groundbreaking new technique to reveal previously unrecognized properties of technologically crucial silicon crystals and uncovered new information about an important subatomic particle and a long-theorized fifth force of nature.

The research was an international collaboration conducted at the National Institute of Standards and Technology (NIST). Dmitry Pushin, a member of the University of Waterloo’s Institute for Quantum Computing and a faculty member in Waterloo’s Department of Physics and Astronomy, was the only Canadian researcher involved in the study. Pushin was interested in producing high-quality quantum sensors out of perfect crystals.

By aiming subatomic particles known as neutrons at silicon crystals and monitoring the outcome with exquisite sensitivity, researchers were able to obtain three extraordinary results: the first measurement of a key neutron property in 20 years using a unique method; the highest-precision measurements of the effects of heat-related vibrations in a silicon crystal; and limits on the strength of a possible “fifth force” beyond standard physics theories.

Alpha Centauri seems almost within grasp as promising research soars into reality.


Lightsails were once a thing of science fiction, evolving through several variations over the last 40 years. Now, science fiction is becoming reality. Advances in laser technology and new ultrastrong, ultralight materials open up the possibility of venturing beyond our solar system in the not-too-distant future.

Researchers from UCLA and the University of Pennsylvania recently published two papers outlining various shapes and heat-dissipating materials they tested to evaluate lightsails beyond previous limits. The research was conducted in conjunction with the Breakthrough Starshot Initiative, a project with the goal of sending a microchip-sized probe to the Alpha Centauri system, which, at just over 4 light-years away, is the closest and possibly most habitable neighboring star system. Breakthrough Starshot plans to use a high-powered laser array to propel tiny lightsail probes through space at a top speed of some 20 percent the speed of light. Incorporated into the sails would be minuscule scientific instruments, such as cameras, magnetometers, and communicators that could beam information back to Earth as they fly through the Alpha Centuari system.

A parachute that can withstand the heat

Aaswath Raman, a professor in the Department of Materials Science and Engineering at UCLA, has laid out two elements key to creating a functioning lightsail: it must be extremely lightweight, and it needs to reflect or disperse heat incredibly well.

Engineers have discovered a way to more than double the lifespan of batteries used in smartphones and electric cars.

The battery breakthrough was successfully demonstrated by researchers at the University of Queensland in Australia, who increased the lifespan of a lithium-ion (li-ion) battery from several hundred charge/ discharge cycles, to more than 1,000.

“Our process will increase the lifespan of batteries in many things, from smartphones and laptops, to power tools and electric vehicles,” said Professor Lianzhou Wang from the Australian Institute for Bioengineering and Nanotechnology.