Toggle light / dark theme

Mathematicians suggest liquid crystals could be used to create building blocks for a new kind of computer

A pair of researchers at MIT have found evidence suggesting that a new kind of computer could be built based on liquid crystals rather than silicon. In their paper published in the journal Science Advances, Žiga Kos and Jörn Dunkel outline a possible design for a computer that takes advantage of slight differences in the orientation of the molecules that make up liquid crystals and the advantages such a system would have over those currently in use.

Most modern screens are made using (LCDs). Such displays are made by growing crystals in a flat plane. These crystals are made up of rod-shaped that line up in a parallel fashion (those that line up the wrong way are removed). The orientation of the molecules in LCDs are not all perfect alignments, of course, but they are close enough to allow for sharp imagery.

In this new effort, Kos and Dunkel, suggest it should be possible to take advantage of those slight misalignments to create a new way to hold and manipulate computer data. They note that such a computer could encode a unique value to each type of misalignment to hold a bit of data. Thus, a computer using this approach would not be constrained to conventional binary bits—it could have a whole host of options, perhaps making it much faster than machines used today (depending on how quickly the orientations could be changed).

Atoms Blasted with Fibonacci Laser Produce Two-Dimensional Time

Exactly like a quasicrystal, this arrangement is ordered without repetition. Similar to a quasicrystal, it’s a single-dimensional representation of a 2-dimensional pattern. As a consequence of the flattening of dimensions, the system is given two time symmetries instead of just one: the system is given another dimension of time that does not exist.

Nevertheless, quantum computers remain extremely complex experimental systems, so it is not yet known whether the benefits of the theory will hold true in actual qubits.

The experientialists tested the theory using Quantinuum’s quantum computer. Periodically and using Fibonacci sequences, laser light was pulsed at the computer’s qubits.

Big Changes In Architectures, Transistors, Materials

Who’s doing what in next-gen chips, and when they expect to do it.

Chipmakers are gearing up for fundamental changes in architectures, materials, and basic structures like transistors and interconnects. The net result will be more process steps, increased complexity for each of those steps, and rising costs across the board.

At the leading-edge, finFETs will run out of steam somewhere after the 3nm (30 angstrom) node. The three foundries still working at those nodes — TSMC, Samsung, and Intel, as well as industry research house imec — are looking to some form of gate-all-around transistors as the next transistor structure in order to gain tighter control over gate leakage.

Tiny Magnets Could Hold the Secret to Miniaturizable Quantum Computers

In new research from the U.S. Department of Energy’s (DOE) Argonne National Laboratory, scientists have achieved efficient quantum coupling between two distant magnetic devices, which can host a certain type of magnetic excitations called magnons. These excitations happen when an electric current generates a magnetic field. Coupling allows magnons to exchange energy and information. This kind of coupling may be useful for creating new quantum information technology devices.

“Remote coupling of magnons is the first step, or almost a prerequisite, for doing quantum work with magnetic systems,” said Argonne senior scientist Valentine Novosad, an author of the study. “We show the ability for these magnons to communicate instantly with each other at a distance.”

Engineers fabricate a chip-free, wireless, electronic ‘skin’

Wearable sensors are ubiquitous thanks to wireless technology that enables a person’s glucose concentrations, blood pressure, heart rate, and activity levels to be transmitted seamlessly from sensor to smartphone for further analysis.

Most wireless sensors today communicate via embedded Bluetooth chips that are themselves powered by small batteries. But these conventional chips and power sources will likely be too bulky for next-generation sensors, which are taking on smaller, thinner, more flexible forms.

Now MIT engineers have devised a new kind of that communicates wirelessly without requiring onboard chips or batteries. Their design, detailed in the journal Science, opens a path toward chip-free wireless sensors.

Chinese Researchers Report on Highly Efficient Process for Entangling Photons

A team of Chinese scientists report on a new method for entangling photons that they say could make quantum networks and quantum computing more practical, according to the South China Post.

In a study published in Nature Photonics, the team from the University of Science and Technology of China said that the new way to produce entangled photons is extremely efficient. The work was led by Jian-Wei Pan, one of the world’s leading quantum researcher from the Hefei National Research Center for Physical Sciences at the Microscale, the University of Science and Technology of China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China.

Entangled photons are needed for certain forms of quantum communication and computing. These technologies require the ability to efficiently produce large numbers of particles — in this case, photons — that can remain entangled even when separated by vast distances to process and protect information. Specifically, the technology could be used in quantum relays that are used in long-distance, attack-proof quantum communication, the newspaper reports.

Brain — Computer Interface. How this new technology will change the word

Discussion panel with:
- Swati Chavda, a science fiction writer and former brain surgeon.
- Ron S. Friedman, a science fiction writer and an Information Technologies Specialist.

August 13th 2022, When Words Collide festival.

#booktube #authortube #writingtube #braincomputerinterface #neuralink.

Relevant links:

Swati Chavda website: https://www.swatichavda.com/

Ron S. Friedman website: https://ronsfriedman.wordpress.com/

Who Gets to Work in the Digital Economy?

If the combination of Covid-19 and remote work technologies like Zoom have undercut the role of cities in economic life, what might an even more robust technology like the metaverse do? Will it finally be the big upheaval that obliterates the role of cities and density? To paraphrase Airbnb CEO Brian Chesky: The place to be was Silicon Valley. It feels like now the place to be is the internet.

The simple answer is no, and for a basic reason. Wave after wave of technological innovation — the telegraph, the streetcar, the telephone, the car, the airplane, the internet, and more — have brought predictions of the demise of physical location and the death of cities.


Remote work has become commonplace since the beginning of the Covid-19 pandemic. But the focus on daily remote work arrangements may miss a larger opportunity that the pandemic has unearthed: the possibility of a substantially increased labor pool for digital economy work. To measure interest in digital economy jobs, defined as jobs within the business, finance, art, science, information technology, and architecture and engineering sectors, the authors conducted extensive analyses of job searches on the Bing search engine, which accounts for more than a quarter of all desktop searches in the U.S. They found that, not only did searches for digital economy jobs increase since the beginning of the pandemic, but those searches also became less geographically concentrated. The single biggest societal consequence of the dual trends of corporate acceptance of remote work and people’s increased interest in digital economy jobs is the potential geographic spread of opportunity.

Page-utils class= article-utils—vertical hide-for-print data-js-target= page-utils data-id= tag: blogs.harvardbusiness.org, 2007/03/31:999.334003 data-title= Who Gets to Work in the Digital Economy? data-url=/2022/08/who-gets-to-work-in-the-digital-economy data-topic= Business and society data-authors= Scott Counts; Siddharth Suri; Alaysia Brown; Brian Xu; Sharat Raghavan data-content-type= Digital Article data-content-image=/resources/images/article_assets/2022/08/Aug22_04_509299271-383x215.jpg data-summary=

The labor market for jobs you can do on a laptop is expanding beyond major cities.