Toggle light / dark theme

“Moore’s law could once again get a reprieve, in spite of the naysayers.”


Using graphene and molybdenum disulphide, scientists in China have made a transistor gate with a length of only 0.3 nanometres, equivalent to just one carbon atom, by exploiting the vertical aspect of the device.

In 1959, scientists at Bell Labs invented the metal–oxide–semiconductor field-effect transistor (MOSFET). This led to mass-production of transistors for a wide range of applications – including computer processors. The Intel 4,004, the first commercially produced microprocessor, debuted in 1971 and featured 2,250 transistors on a single chip, using a 10,000 nm (10 µm) fabrication process.

Since that time, the MOSFET has become the most widely manufactured device in history. Thanks to vast improvements in miniaturisation, the latest processors now contain 114 billion transistors, making them 50 million times more powerful than the Intel 4004.

If you’re anything like us you’ve been keeping a close eye on the development of RISC-V: an open standard instruction set architecture (ISA) that’s been threatening to change the computing status quo for what seems like forever. From its humble beginnings as a teaching tool in Berkeley’s Parallel Computing Lab in 2010, it’s popped up in various development boards and gadgets from time to time. It even showed up in the 2019 Hackaday Supercon badge, albeit in FPGA form. But getting your hands on an actual RISC-V computer has been another story entirely. Until now, that is.

Clockwork has recently announced the availability of the DevTerm R-01, a variant of their existing portable computer that’s powered by a RISC-V module rather than the ARM chips featured in the earlier A04 and A06 models. Interestingly the newest member of the family is actually the cheapest at $239 USD, though it’s worth mentioning that not only does this new model only include 1 GB of RAM, but the product page makes it clear that the RISC-V version is intended for experienced penguin wranglers who aren’t afraid of the occasional bug.

Beyond the RISC-V CPU and slimmed down main memory, this is the same DevTerm that our very own [Donald Papp] reviewed earlier this month. Thanks to the modular nature of the portable machine, this sort of component swapping is a breeze, though frankly we’re impressed that the Clockwork team is willing to go out on such a limb this early in the product’s life. In our first look at the device we figured at best they would release an updated CPU board to accommodate the Raspberry Pi 4 Compute Module, but supporting a whole new architecture is a considerably bolder move. One wonders that other plans they may have for the retro-futuristic machine. Perhaps a low-power x86 chip isn’t out of the question?

Circa 2021


It is now possible to grow and culture human brain tissue in a device that costs little more than a cup of coffee. With a $5 washable and reusable microchip, scientists can watch self-organising brain samples, known as brain organoids, growing in real time under a microscope.

The device, dubbed a “microfluidic bioreactor”, is a 4-by-6-centimetre chip that includes small wells in which the brain organoids grow. Each is filled with nutrient-rich fluid that is pumped in and out automatically, like the fluids that flush through the human brain.

Using this system, Ikram Khan at the Indian Institute of Technology Madras in Chennai and his colleagues at the Massachusetts Institute of Technology (MIT) have now reported the growth of a brain organoid over seven days. This demonstrates that the brain cells can thrive inside the chip, says Khan.

And going forward, we’ll do this with far more knowledge of what we’re doing, and more control over the genes of our progeny. We can already screen ourselves and embryos for genetic diseases. We could potentially choose embryos for desirable genes, as we do with crops. Direct editing of the DNA of a human embryo has been proven to be possible — but seems morally abhorrent, effectively turning children into subjects of medical experimentation. And yet, if such technologies were proven safe, I could imagine a future where you’d be a bad parent not to give your children the best genes possible.

Computers also provide an entirely new selective pressure. As more and more matches are made on smartphones, we are delegating decisions about what the next generation looks like to computer algorithms, who recommend our potential matches. Digital code now helps choose what genetic code passed on to future generations, just like it shapes what you stream or buy online. This might sound like dark science fiction, but it’s already happening. Our genes are being curated by computer, just like our playlists. It’s hard to know where this leads, but I wonder if it’s entirely wise to turn over the future of our species to iPhones, the internet and the companies behind them.

Discussions of human evolution are usually backward looking, as if the greatest triumphs and challenges were in the distant past. But as technology and culture enter a period of accelerating change, our genes will too. Arguably, the most interesting parts of evolution aren’t life’s origins, dinosaurs, or Neanderthals, but what’s happening right now, our present – and our future.

While many say that Moore’s Law is dead, scientists are hard at work discovering new semiconductor materials which will help increase CPU and GPU performance well into the 2030’s right on track of Moore’s Laws exponential properties. Companies such as TSMC and Intel could use Graphene to make the smallest possible transistors and much improve their efficiency as electricity prices skyrocket. 2nm or 1nm processors might soon come out.

TIMESTAMPS:
00:00 The Revival of Moore’s Law.
01:15 Smallest Transistor ever made.
03:54 What actually are transistors?
05:49 Moore’s Law Is Dead?
07:55 Last Words.

#cpu #mooreslaw #graphene

Researchers in Japan have developed a diamond FET with high hole mobility.


In the 1970s, Stephen Hawking found that an isolated black hole would emit radiation but only when considered quantum mechanics. This is known as black hole evaporation because the black hole shrinks. However, this led to the black hole information paradox.

If the black hole evaporates entirely, physical information would permanently disappear in a black hole. However, this violates a core precept of quantum physics: the information cannot vanish from the Universe.

A new study by an international quartet of physicists suggests that black holes are more complex than originally understood. They have a gravitational field that, at the quantum level, encodes information about how they were formed.

Brain research has in recent years indisputably entered a new epoch, driven by substantial methodological advances and digitally enabled data integration and modeling at multiple scales – from molecules to the whole system. Major advances are emerging at the intersection of neuroscience with technology and computing. This new science of the brain integrates high-quality basic research, systematic data integration across multiple scales, a new culture of large-scale collaboration and translation into applications. A systematic approach, as pioneered in Europe’s Human Brain Project (HBP), will be essential in meeting the pressing medical and technological challenges of the coming decade.

An is an external information processing system that augments the brain’s biological high-level cognitive processes.

An individual’s would be comprised of external memory modules 0, processors 0, IO devices and software systems that would interact with, and augment, a person’s biological brain. Typically this interaction is described as being conducted through a direct brain-computer interface 0, making these extensions functionally part of the individual’s mind.

Individuals with significant exocortices can be classified as transhuman beings.

Over the past decades, engineers have created increasingly advanced and highly performing integrated circuits (ICs). The rising performance of these circuits in turn increased the speed and efficiency of the technology we use every day, including computers, smartphones and other smart devices.

To continue to improve the performance of integrated circuits in the future, engineers will need to create thinner transistors with shorter channels. Down-scaling existing silicon-based devices or creating smaller devices using alternative semiconducting materials that are compatible with existing fabrication processes, however, has proved to be challenging.

Researchers at Purdue University have recently developed new transistors based on indium oxide, a semiconductor that is often used to create touch screens, flatscreen TVs and solar panels. These transistors, introduced in a paper published in Nature Electronics, were fabricated using atomic layer deposition, a process that is often employed by transistor and electronics manufacturers.