Toggle light / dark theme

When people get into their 40s and beyond, their close-up vision starts to worsen. For many people, cranking up the font size on a phone or maxing out the brightness on a computer is the only way to be able to read some text.

This condition is known as presbyopia, and it affects around 128 million people in the US and more than a billion people worldwide.

In late 2021, the US Food and Drug Administration approved a new eye drop medication to treat presbyopia. As an optometrist, I was initially skeptical.

Do you want your gadgets to be faster? What if your phone can cut the time it takes to.
complete tasks? Or your computer can compute way faster? Most of us do, but with the.
state of current technology, the truth is, they aren’t likely to get much faster than they.
are! For the past decade and a half, the clock rate of single processor cores has stalled.
at a few Gigahertz, and it is getting harder to push the boundaries of the famous.
Moore’s law! However, a new invention by IBM may change all of that! What are optical.
circuits, how do they work, and how will they make your devices faster? Join us as we.
dive into the new optical circuit that surpasses every CPU known to humans!

Disclaimer.
• Our channel is not associated with Elon Musk in ANY way and is purely made for entertainment purposes, based on facts, rumors and fiction. Enjoy Watching.

Elon Musk’s Neuralink rival Synchron has begun human trials of its brain implant that lets the wearer control a computer using thought alone.

The firm’s Stentrode brain implant, about the size of a paperclip, will be implanted in six patients in New York and Pittsburgh who have severe paralysis.

Stentrode will let patients control digital devices just by thinking and give them back the ability to perform daily tasks, including texting, emailing and shopping online.

The team, part of Surrey’s research program in the exciting new field of quantum biology, have shown that this modification in the bonds between the DNA strands is far more prevalent than has hitherto been thought. The protons can easily jump from their usual site on one side of an energy barrier to land on the other side. If this happens just before the two strands are unzipped in the first step of the copying process, then the error can pass through the replication machinery in the cell, leading to what is called a DNA mismatch and, potentially, a mutation.

In a paper published this week in the journal Communications Physics, the Surrey team based in the Leverhulme Quantum Biology Doctoral Training Center used an approach called open quantum systems to determine the physical mechanisms that might cause the protons to jump across between the DNA strands. But, most intriguingly, it is thanks to a well-known yet almost magical quantum mechanism called tunneling—akin to a phantom passing through a solid wall—that they manage to get across.


The molecules of life, DNA, replicate with astounding precision, yet this process is not immune to mistakes and can lead to mutations. Using sophisticated computer modeling, a team of physicists and chemists at the University of Surrey have shown that such errors in copying can arise due to the strange rules of the quantum world.

The two strands of the famous DNA double helix are linked together by called protons—the nuclei of atoms of hydrogen—which provide the glue that bonds molecules called bases together. These so-called are like the rungs of a twisted ladder that makes up the structure discovered in 1952 by James Watson and Francis Crick based on the work of Rosalind Franklin and Maurice Wilkins.

Normally, these DNA bases (called A, C, T and G) follow strict rules on how they bond together: A always bonds to T and C always to G. This strict pairing is determined by the molecules’ shape, fitting them together like pieces in a jigsaw, but if the nature of the hydrogen bonds changes slightly, this can cause the pairing rule to break down, leading to the wrong bases being linked and hence a mutation. Although predicted by Crick and Watson, it is only now that sophisticated computational modeling has been able to quantify the process accurately.

The future of astronomy goes far beyond the James Webb Space Telescope.

For example, it’s theoretically possible to use quantum computers as a means for constructing colossal, planet-sized telescopes, according to a study shared to a preprint server and initially reported by New Scientist.

And, if we could make it work, a planetary telescope would peer much farther into the big black abyssal depths of space, and image the distant universe at untold levels of resolution.

This article argues that consciousness has a logically sound, explanatory framework, different from typical accounts that suffer from hidden mysticism. The article has three main parts. The first describes background principles concerning information processing in the brain, from which one can deduce a general, rational framework for explaining consciousness. The second part describes a specific theory that embodies those background principles, the Attention Schema Theory. In the past several years, a growing body of experimental evidence—behavioral evidence, brain imaging evidence, and computational modeling—has addressed aspects of the theory. The final part discusses the evolution of consciousness. By emphasizing the specific role of consciousness in cognition and behavior, the present approach leads to a proposed account of how consciousness may have evolved over millions of years, from fish to humans. The goal of this article is to present a comprehensive, overarching framework in which we can understand scientifically what consciousness is and what key adaptive roles it plays in brain function.

A vulnerability in the domain name system (DNS) component of a popular C standard library that is present in a wide range of IoT products may put millions of devices at DNS poisoning attack risk.

A threat actor can use DNS poisoning or DNS spoofing to redirect the victim to a malicious website hosted at an IP address on a server controlled by the attacker instead of the legitimate location.

The library uClibc and its fork from the OpenWRT team, uClibc-ng. Both variants are widely used by major vendors like Netgear, Axis, and Linksys, as well as Linux distributions suitable for embedded applications.