Toggle light / dark theme

A breakthrough from Deakin University researchers could help address a major obstacle in the development of environmentally-friendly, cost effective, polymer-based batteries.

The team from Deakin’s Institute for Frontier Materials (IFM) used modeling and simulations to design a new type of solid-state polymer electrolyte, showing its potential use in various types of polymer-based solid-state batteries, particularly sodium and potassium batteries.

Polymer-based batteries are able to support high-energy density metals in an all solid-state batteries. They use polymer as the ion conductor rather than flammable organic liquid solvents in current lithium-ion batteries. Therefore, a polymer-based solid-state battery offers an energy storage option that is greener, safer and providing a higher capacity, meaning more energy.

Researchers have reported the discovery of an exoplanet orbiting Ross 508 near the inner edge of its habitable zone.


Researchers at the University of Massachusetts Amherst recently announced that they have figured out how to engineer a biofilm that harvests the energy in evaporation and converts it to electricity. This biofilm, which was announced in Nature Communications, has the potential to revolutionize the world of wearable electronics, powering everything from personal medical sensors to personal electronics.

“This is a very exciting technology,” says Xiaomeng Liu, graduate student in electrical and computer engineering in UMass Amherst’s College of Engineering and the paper’s lead author. “It is real green energy, and unlike other so-called ‘green-energy’ sources, its production is totally green.”

That’s because this —a thin sheet of bacterial cells about the thickness of a sheet of paper—is produced naturally by an engineered version of the bacteria Geobacter sulfurreducens. G. sulfurreducens is known to produce electricity and has been used previously in “microbial batteries” to . But such batteries require that G. sulfurreducens is properly cared for and fed a constant diet. By contrast, this new biofilm, which can supply as much, if not more, energy than a comparably sized battery, works, and works continuously, because it is dead. And because it’s dead, it doesn’t need to be fed.

A new method of radiation-resistant computer data storage called watermark storage that’s been developed by a University of Alabama in Huntsville (UAH) professor leading a student team has direct applications in the nuclear power and space industries.

“Data-driven analytics are growing exponentially for space and nuclear environments,” says Dr. Biswajit Ray, an assistant professor of electrical and at UAH, a part of the University of Alabama System.

He says the new storage system doesn’t rely on an electronic charge for NAND flash storage, as traditional data drives do. NAND stands for the “not and” type of flash memory, which is in common use. Interestingly, the watermark storage method requires no new components.

Scientists at the University of Virginia School of Medicine and their collaborators have used DNA to overcome a nearly insurmountable obstacle to engineer materials that would revolutionize electronics.

One possible outcome of such engineered materials could be superconductors, which have zero electrical resistance, allowing electrons to flow unimpeded. That means that they don’t lose energy and don’t create heat, unlike current means of electrical transmission. Development of a superconductor that could be used widely at room temperature—instead of at extremely high or , as is now possible—could lead to hyper-fast computers, shrink the size of electronic devices, allow to float on magnets and slash energy use, among other benefits.

One such superconductor was first proposed more than 50 years ago by Stanford physicist William A. Little. Scientists have spent decades trying to make it work, but even after validating the feasibility of his idea, they were left with a challenge that appeared impossible to overcome. Until now.

A roadmap for the future direction of quantum simulation has been set out in a paper co-authored at the University of Strathclyde.

Quantum computers are hugely powerful devices with a capacity for speed and calculation which is well beyond the reach of classical, or binary, computing. Instead of a binary system of zeroes and ones, it operates through superpositions, which may be zeroes, ones or both at the same time.

The continuously-evolving development of quantum computing has reached the point of having an advantage over classical computers for an artificial problem. It could have future applications in a wide range of areas. One promising class of problems involves the of quantum systems, with potential applications such as developing materials for batteries, industrial catalysis and nitrogen fixing.

According to its designers, the device has a power density of 1.1 kW/L and an efficiency of 97%.

The micro-inverter utilizes GaN 600V diodes and power transistors developed by CEA’s electronic branch CEA-Leti. “With this coplanar technology, it would be possible to make the power component ‘smarter’ with protection (temperature, voltage, current, etc.) and control (driver) functions. It is also possible to design bidirectional voltage interrupters which do not exist at present,” the French scientists said in a statement.

Elon Musk, often known to break the Internet by his statements or acts recently tweeted what seemed like a futuristic invention. Being one of the wealthiest people on the planet was not enough for the CEO of Tesla as he thought two of his brains would be better. One would always wonder how a brain can be transferred into a man-made machine, but with his recent tweet, Elon Musk confirmed he copied his brain to the machine and talks to his digital version.

Read More, ‘I haven’t had sex in ages’: Elon Musk Defends Himself Against Affair Allegations With Google’s Sergey Brin’s Wife, Fans Say He’s a Snake For Forgetting Brin’s Loan To Build Tesla

A recent tweet by Shibetoshi Nakamoto, known as the creator of Dogecoin with an account named, @BillyM2k asked, “If you could upload your brain to the cloud, and talk to a virtual version of yourself, would you be buddies?”. In the second continuation of the tweet, the user posted, “would be cool to have a competitive game buddy of approximately the same skill level. Except he would be a computer and have infinite time so I would more just see him get better at everything while I am busy with dumb life things.

The startup is hiring Ritesh Jain, VP of engineering at Intel, to help it move from the prototype phase of its chip development to mass production.


ESA is prepping to send a spacecraft to Venus — a feat which will require state-of-the-art methods to get through the planet’s grueling atmosphere.

A newly developed, water-activated disposable paper battery promises to make a big impact on single-use electronics – those temporary gadgets used in medical and industrial fields where electronic waste can quickly start piling up.

The battery that has been demonstrated by researchers is biodegradable, made from sustainable materials, and cheap to put together. What’s more, it can be produced in a variety of shapes and sizes as needed.

To give an idea of the power, a two-cell battery made using the technology was enough to power an LCD alarm clock. While it won’t be charging up your laptop anytime soon, there’s lots of potential for low-powered sensors and trackers.