Toggle light / dark theme

What if we built a Matrioshka Brain? In this video, Unveiled asks what would happen if we built a computer AROUND A STAR? This is one of the most incredible megastructures we’ve ever even contemplated… but what would the universe be like if it was home to these things? And how would we possibly keep control?

This is Unveiled, giving you incredible answers to extraordinary questions!

Find more amazing videos for your curiosity here:
What If Humanity Was A Type VII Civilization? — https://youtu.be/pz-Z8AavJZY
What If the Universe is an Atom? — https://youtu.be/WYyu9h9JJfg.

Are you constantly curious? Then subscribe for more from Unveiled ► https://wmojo.com/unveiled-subscribe.

#MatrioshkaBrain #Kardashev #Future

At present, our brains are mostly dependent on all the stuff below the neck to turn thought into action. But advances in neuroscience are making it easier than ever to hook machines up to minds. See neuroscientists John Donoghue and Sheila Nirenberg, computer scientist Michel Maharbiz, and psychologist Gary Marcus discuss the cutting edge of brain-machine interactions in “Cells to Silicon: Your Brain in 2050,” part of the Big Ideas series at the 2014 World Science Festival.

This program is part of the Big Ideas Series, made possible with support from the John Templeton Foundation.

Visit our Website: http://www.worldsciencefestival.com/
Like us on Facebook: https://www.facebook.com/worldsciencefestival.
Follow us on twitter: https://twitter.com/WorldSciFest.

Original Program date: May 29, 2014
Host: Robert Krulwich.
Participants: Gary Marcus, John Donoghue, Sheila Nirenberg, Michel M. Maharbiz.

Robert Krulwich’s Introduction. 00:11

Participant Introductions. 2:00

Blockchain is a digital technology that allows a secure and decentralized record of transactions that is increasingly used for everything from cryptocurrencies to artwork. But Yale researchers have found a new use for blockchain: they’ve leveraged the technology to give individuals control of their own genomes.

Their findings are published June 29 in the journal Genome Biology.

“Our primary goal is to give ownership of genomic data back to the individual,” said senior author Mark Gerstein, the Albert L. Williams Professor of Biomedical Informatics and professor of molecular biophysics and biochemistry, of computer science, and of statistics and .

LeviPrint is a system that uses acoustic manipulation for assembling objects without physical contact. It generates acoustic fields that trap small particles, glue droplets and elongated stick-like elements that can be manipulated and reoriented as they are levitated. It is a fully functional system for manufacturing 3D structures using contactless manipulation.

It was developed by researchers from the UPNA/NUP-Public University of Navarre Asier Marzo and Iñigo Ezcurdia, who together with Rafael Morales (Ultraleap Ltd, UK) and Marco Andrade (University of São Paulo, Brazil) are authors of the paper “LeviPrint: Contactless Fabrication using Full Acoustic Trapping of Elongated Parts.”

This research is due to be presented in August in Vancouver (Canada) at SIGGRAPH, a conference on and where companies such as Nvidia, Disney Research and Facebook Reality Labs present their work.

Intel Labs has announced that it has made a noteworthy advancement in the area of integrated photonics research, which it bills as the “next frontier” in expanding communications bandwidth between compute silicon in data centers and across networks. The company believes this advancement holds the promise of a future input/output (I/O) interface with improved energy efficiency and bandwidth, and a longer reach.

The disclosure explains the possibility to obtain well-matched output power in conjunction with uniform and densely spaced wavelengths, according to Haisheng Rong, Senior Principal Engineer at Intel Labs. Rong also points out that this can be done by utilizing existing manufacturing and process techniques in Intel fabs, and therefore ensures a path to volume production of the “next-generation co-packaged optics and optical compute interconnect at scale.”

Intel states that this breakthrough results in industry-leading advancements in multiwavelength integrated optics. It includes the demonstration of an eight-wavelength distributed feedback (DFB) laser array that is fully integrated on a silicon wafer and provides exceptional output power uniformity of +/-0.25 decibel (db), as well as wavelength spacing uniformity of +/-6.5% that go beyond industry specifications.

If you need the hardware.


A separate study used metasurfaces as a telephone of sorts to help two people text simple messages, all without lifting a finger.

Direct brain-to-brain communication isn’t new. Previous studies using non-invasive setups had participants playing 20 questions with their brain waves. Another study built a BrainNet for three volunteers, allowing them to play a Tetris-like game using brainwaves alone. The conduit for those mindmelds relied on cables and the internet. One new study asked if metasurfaces could do the same.

Led by Dr. Tie Jun Cui at the Institute of Electromagnetic Space, Southeast University in China, the study linked a well-known brainwave signal, P300, to the properties of a metasurface. Their setup, electromagnetic brain-computer-metasurface (EBCM), used brainwaves to control a particular type of metasurface known as an information metasurface, which can code 0s and 1s like an electronic circuit board.

Neurograins might be the future of implantable Brain Computer Interfaces due to their advantages in terms of abilities and safety in terms of implantation. Due to being the smallest Microchips ever made, in addition to being very powerful, they can make very high resolution recordings of brain activity and even stimulate areas in the brain for medical treatments for people suffering from brain disorders.

The field of neuroscience is developing at a rapid pace, which constantly improves on our BCI Technology and enabling more and more treatments and applications for Brain Computer Interface. It’s clear that this is very advanced future technology and who knows, maybe these new Neurograin Brain Computer Interfaces may play a part in it. Or maybe Elon Musk’s Neuralink’s approach will win in the end. People willingly microchipping their brains will be more common in the future.

If you enjoyed this video, please consider rating this video and subscribing to our channel for more frequent uploads. Thank you! smile

TIMESTAMPS:
00:00 The smallest Chips ever made?
01:48 How is it different?
02:47 How this Brain Computer Interface works.
03:51 What can this BCI do?
05:46 The Future of Brain Computer Interfaces.
08:30 Last Words.

#Neurograins #bci #neuralink