Toggle light / dark theme

Under the direction of Latha Venkataraman, associate professor of applied physics at Columbia Engineering, researchers have designed a new technique to create a single-molecule diode, and, in doing so, they have developed molecular diodes that perform 50 times better than all prior designs. Venkataraman’s group is the first to develop a single-molecule diode that may have real-world technological applications for nanoscale devices. Their paper, “Single-Molecule Diodes with High On-Off Ratios through Environmental Control,” is published May 25 in Nature Nanotechnology.

“Our new approach created a single-molecule diode that has a high (250) rectification and a high “on” current (~ 0.1 micro Amps),” says Venkataraman. “Constructing a device where the active elements are only a single molecule has long been a tantalizing dream in nanoscience. This goal, which has been the ‘holy grail’ of molecular electronics ever since its inception with Aviram and Ratner’s 1974 seminal paper, represents the ultimate in functional miniaturization that can be achieved for an electronic device.”

With electronic devices becoming smaller every day, the field of has become ever more critical in solving the problem of further miniaturization, and single molecules represent the limit of miniaturization. The idea of creating a single-molecule diode was suggested by Arieh Aviram and Mark Ratner who theorized in 1974 that a molecule could act as a rectifier, a one-way conductor of electric current. Researchers have since been exploring the charge-transport properties of molecules. They have shown that single-molecules attached to metal electrodes (single-molecule junctions) can be made to act as a variety of circuit elements, including resistors, switches, transistors, and, indeed, diodes. They have learned that it is possible to see quantum mechanical effects, such as interference, manifest in the conductance properties of molecular junctions.

A Matrioshka Brain is a supermassive structure in space consisting of processors and connected to each other into a massive computer around a sun harnessing its energy completely. So far we haven’t built one as we don’t have the technology for it but when we do the question will be if people will be lost in the vast computing power of the Matrishka brain.

Watch all 3 videos with Brendan Caulfield:
3. Future of Humanity https://youtu.be/XbhWEDhcdFk.
2. The Rockets of SpaceX 🚀https://youtu.be/VPgVS9qgBEM
1. The CAR company that will take us to SPACE🚀 https://youtu.be/Y0jiGkAH-pE

Want to make better YouTube videos? You need to understand your DATA and optimize your youtube videos for the audience you want to reach. I recommend using TUBEBUDDY a free Chrome extension that helps you do that:🟥 https://www.tubebuddy.com/BORNATUBERS

#technology #futureofhumanity #elonmusk.

Do you want to find the GOLD in Life? The Uncle Gold Podcast focuses on success in life and how to improve everything we do, from our finances to our happiness, from personal development to social media.

To Listen to the full length interviews find us on all the popular Podcast streaming sites like Spotify, Apple Podcasts, Deezer, TuneIn, and others.

How does the human brain work and how is it different from computers? If you think this is too complex to explain in a few minutes, you will be surprised. In this energetic and insightful talk, neuro-scientist Dr. Henning Beck gives insights into thought processes and tells you how you can create new ideas.

Dr. Henning Beck, neuroscientist and author, supports businesses to use brain-based approaches in order to develop innovative and efficient workflows. He studied biochemistry in Tübingen from 2003 to 2008. After his diploma thesis, he started his research at the Hertie Institute for Clinical Brain Research and intensified his work at the Institute of Physiological Chemistry at the University of Ulm. Supported by a PhD scholarship granted by the Hertie Foundation he did his doctorate at the Graduate School of Cellular & Molecular Neuroscience in Tübingen. He expanded his scientific expertise by an International Diploma in Project Management at the University of California, Berkeley in 2013. Until 2014, he worked for start-ups in the San Francisco Bay Area to develop creative workspace designs and advanced communication styles based on neuroscientific principles.

This talk was given at a TEDx event using the TED conference format but independently organized by a local community.

Recently, researchers have been incorporating graphene-based materials into superconducting quantum computing devices, which promise faster, more efficient computing, among other perks. Until now, however, there’s been no recorded coherence for these advanced qubits, so there’s no knowing if they’re feasible for practical quantum computing.

In a paper published today in Nature Nanotechnology, the researchers demonstrate, for the first time, a coherent qubit made from graphene and exotic materials. These materials enable the qubit to change states through voltage, much like transistors in today’s traditional computer chips — and unlike most other types of superconducting qubits. Moreover, the researchers put a number to that coherence, clocking it at 55 nanoseconds, before the qubit returns to its ground state.

The work combined expertise from co-authors William D. Oliver, a physics professor of the practice and Lincoln Laboratory Fellow whose work focuses on quantum computing systems, and Pablo Jarillo-Herrero, the Cecil and Ida Green Professor of Physics at MIT who researches innovations in graphene.