Toggle light / dark theme

What do quantum computers have to do with smog-filled London streets, flying submarines, waistcoats, petticoats, Sherlock Holmesian mysteries, and brass goggles?

A whole lot, according to Nicole Yunger Halpern. Last week, the joined Jacob Barandes, co-director of graduate studies for physics, to discuss her new book, “Quantum Steampunk: The Physics of Yesterday’s Tomorrow.” In it, Yunger Halpern dissects a new branch of science—quantum thermodynamics, or quantum steampunk as she calls it—by fusing steampunk fiction with nonfiction and Victorian-era thermodynamics (the heat and energy that gets pumping) with . Yunger Halpern presents a whimsical lens through which readers can watch a “scientific revolution that’s happening in real time,” Barandes said, exploring mysteries even Holmes couldn’t hope to solve, such as why time flows in only one direction.

“This fusion of old and new creates a wonderful sense of nostalgia and adventure, romance and exploration,” Yunger Halpern said during a virtual Harvard Science Book Talk presented by the University’s Division of Science, Cabot Science Library, and Harvard Book Store. In steampunk, she continued, “fans dress up in costumes full of top hats and goggles and gears and gather at conventions. What they dream, I have the immense privilege of having the opportunity to live.”

Mojo Vision said it has created a new prototype of its Mojo Lens augmented reality contact lenses. This smart contact lens will bring “invisible computing” to life, the company believes.

The Mojo Lens prototype is a critical milestone for the company in its development, testing, and validation process, and is an innovation positioned at the intersection of smartphones, augmented reality/virtual reality, smart wearables, and health tech.

The prototype includes numerous new hardware features and technologies embedded directly into the lens — advancing its display, communications, eye tracking, and power system.

TEMPLE, Texas (KXAN) — Meta, formerly known as Facebook, is expanding its presence in Central Texas.

It plans to make an $800 million investment — this time outside of Austin. The company is creating a Hyperscale Data Center about an hour north of Austin in the city of Temple.

“We sort of jokingly, but not so jokingly call Temple the northern-most suburb of Austin,” said Tim Davis, the mayor of Temple.

Researchers uncovered new information about an important subatomic particle and a long-theorized fifth force of nature.


A group of researchers have used a groundbreaking new technique to reveal previously unrecognized properties of technologically crucial silicon crystals and uncovered new information about an important subatomic particle and a long-theorized fifth force of nature.

The research was an international collaboration conducted at the National Institute of Standards and Technology (NIST). Dmitry Pushin, a member of the University of Waterloo’s Institute for Quantum Computing and a faculty member in Waterloo’s Department of Physics and Astronomy, was the only Canadian researcher involved in the study. Pushin was interested in producing high-quality quantum sensors out of perfect crystals.

By aiming subatomic particles known as neutrons at silicon crystals and monitoring the outcome with exquisite sensitivity, researchers were able to obtain three extraordinary results: the first measurement of a key neutron property in 20 years using a unique method; the highest-precision measurements of the effects of heat-related vibrations in a silicon crystal; and limits on the strength of a possible “fifth force” beyond standard physics theories.

Alpha Centauri seems almost within grasp as promising research soars into reality.


Lightsails were once a thing of science fiction, evolving through several variations over the last 40 years. Now, science fiction is becoming reality. Advances in laser technology and new ultrastrong, ultralight materials open up the possibility of venturing beyond our solar system in the not-too-distant future.

Researchers from UCLA and the University of Pennsylvania recently published two papers outlining various shapes and heat-dissipating materials they tested to evaluate lightsails beyond previous limits. The research was conducted in conjunction with the Breakthrough Starshot Initiative, a project with the goal of sending a microchip-sized probe to the Alpha Centauri system, which, at just over 4 light-years away, is the closest and possibly most habitable neighboring star system. Breakthrough Starshot plans to use a high-powered laser array to propel tiny lightsail probes through space at a top speed of some 20 percent the speed of light. Incorporated into the sails would be minuscule scientific instruments, such as cameras, magnetometers, and communicators that could beam information back to Earth as they fly through the Alpha Centuari system.

A parachute that can withstand the heat

Engineers have discovered a way to more than double the lifespan of batteries used in smartphones and electric cars.

The battery breakthrough was successfully demonstrated by researchers at the University of Queensland in Australia, who increased the lifespan of a lithium-ion (li-ion) battery from several hundred charge/ discharge cycles, to more than 1,000.

“Our process will increase the lifespan of batteries in many things, from smartphones and laptops, to power tools and electric vehicles,” said Professor Lianzhou Wang from the Australian Institute for Bioengineering and Nanotechnology.

The majority of commercial chemicals that enter the market in the United States every year have insufficient health and safety data. For pesticides, the U.S. Environmental Protection Agency uses a variety of techniques to fill data gaps in order to evaluate chemical hazard, exposure and risk. Nonetheless, public concern over the potential threat that these chemicals pose has grown in recent years, along with the realization that traditional animal-testing methods are not pragmatic by means of speed, economics or ethics. Now, researchers at the George Washington University have developed a new computational approach to rapidly screen pesticides for safety, performance and how long they will endure in the environment. Moreover, and most importantly, the new approach will aid in the design of next-generation molecules to develop safer pesticides.

“In many ways, our tool mimics computational drug discovery, in which vast libraries of chemical compounds are screened for their efficacy and then tweaked to make them even more potent against specific therapeutic targets,” Jakub Kostal, an assistant professor of chemistry at GW and principal investigator on the project, said. “Similarly, we use our systems-based approach to modify to make them less toxic and more degradable, while, at the same time, making sure they retain good performance. It’s a powerful tool for both industry and that can help design new, safer analogs of existing commercial agrochemicals, and so protect human life, the environment and industry’s bottom line.”

Using their model, the team analyzed 700 pesticides from the EPA’s pesticide registry. The model considered a pesticide’s likely persistence or degradation in the environment over time, its safety, and how well it performed at killing, repelling or controlling the target problem.

Computer scientists at the University of California San Diego are showing how soil microbes can be harnessed to fuel low-power sensors. This opens new possibilities for microbial fuel cells (MFCs), which can power soil hydration sensors and other devices.

Led by Department of Computer Science and Engineering (CSE) Assistant Professor Pat Pannuto and Gabriel Marcano, a Ph.D. student working with Pannuto, this research was presented today at the first Association for Computer Machinery (ACM) Workshop on No Power and Low Power Internet of Things.

“Our most immediate applications are in agricultural settings, trying to create closed-loop controls. First for watering, but eventually for fertilization and treatment: sensing nitrates, nitrogen, phosphorous, potassium. This could help us understand how to limit run off and other effects,” said Pannuto, senior author on the study titled “Soil Power? Can Microbial Fuel Cells Power Non-Trivial Sensors?”