Toggle light / dark theme

Gates will provide grants to prepare teachers better for teaching math and to curriculum companies and nonprofits to develop higher-quality teaching materials. The foundation will also support research into math education and make grants to help high-school math courses prepare students for college and the workplace.

A big problem with math as it is taught today is that students learn in isolation and can feel crushed when they get the wrong answer to a problem, says Shalinee Sharma, co-founder of Zearn, an educational nonprofit and Gates grantee who, with Hughes, spoke with reporters this week. Zearn uses computer-based lessons that incorporate a lot of visuals to keep students interested and provides feedback on progress to help teachers tailor lessons for individual students. A new approach in which students work in teams to solve problems, she said, can turn all students into “math kids.”

“When all kids are ‘math kids,’ making mistakes will be OK,” she said. “It won’t be embarrassing. In fact, making mistakes will be considered normal and an essential part of math learning.”

Resistive switching random-access memories (RRAMs) integrate information storage and processing into the same device, enabling faster and more energy-efficient computing. However, RRAMs are challenging to fabricate and suffer from inconsistent on-off switching. Now Zheng Jie Tan, Vrindaa Somjit, and collaborators at the Massachusetts Institute of Technology have discovered that adding dopants to the RRAMs dramatically improves their performance and the yield of their fabrication [1]. The researchers say their results provide an additional “knob” to optimize RRAMs, helping position them as one of the leading technologies for so-called in-memory computation.

An RRAM comprises an insulating material sandwiched between two metallic layers. The bits are defined by the amount of current that passes through the device via conduction paths in the insulator under a voltage. If the voltage is strong enough, it can induce the formation or destruction of conduction paths, thus controlling information processing.

While fabricating their device, the researchers added electronegative dopants, such as gold atoms, to the insulating material. The electron redistribution induced by the dopants facilitated the formation of conduction paths, which became more stable and showed increased on-off switching consistency compared with their undoped counterparts. Moreover, doped RRAMs were consistently fabricated with conducting paths already established before the device was used. Undoped RRAMs are often fabricated without such paths, and the postfabrication process required to create them—“electroforming,” involving the application of a very strong voltage—can result in irreparable device damage.

A single computer chip has transmitted a record 1.84 petabits of data per second via a fibre-optic cable – enough bandwidth to download 230 million photographs in that time, and more traffic than travels through the entire internet’s backbone network per second.

Asbjørn Arvad Jørgensen at the Technical University of Denmark in Copenhagen and his colleagues have used a photonic chip – a technology that allows optical components to be built onto computer chips – to divide a stream of data into thousands of separate channels and transmit them all at once over 7.9 kilometres.

First, the team split the data stream into 37 sections, each of which was sent down a separate core of the fibre-optic cable. Next, each of these channels was split into 223 data chunks that existed in individual slices of the electromagnetic spectrum. This “frequency comb” of equidistant spikes of light across the spectrum allowed data to be transmitted in different colours at the same time without interfering with each other, massively increasing the capacity of each core.

Field-effect transistors (FETs) are transistors in which the resistance of most of the electrical current can be controlled by a transverse electric field. Over the past decade or so, these devices have proved to be very valuable solutions for controlling the flow of current in semiconductors.

To further develop FETs, electronics engineers worldwide have recently been trying to reduce their size. While these down-scaling efforts have been found to increase the device’s speed and lower the power consumption, they are also associated with short-channel effects (i.e., unfavorable effects that occur when an FET’s channel length is approximately equal to the space charge regions of source and drain junctions within its substrate).

These undesirable effects, which include barrier lowering and velocity saturation, could be suppressed by using 2D semiconductor channels with high carrier mobilities and ultrathin high–k dielectrics (i.e., materials with high dielectric constants). Integrating 2D semiconductors with dielectrics with similar oxide thicknesses has been found to be highly challenging.

“Approximately 200,000 times thinner than human hair.”

New energy-efficient devices are made possible by the thinnest ferroelectric material ever created, thanks to the University of California Berkeley and Argonne National Laboratory.

As a result of this development, intriguing material behavior at small scales could reduce energy demands for computing, revealed ANL.

Vintage lovers, unite.

Jason Scott, a tech activist has launched a new website named Discmaster, which enables you to find any file among 91.7 million vintage computer files taken from Archive.org.

“The value proposition is the value proposition of any freely accessible research database,” stated Jason Scott in an interview with Ars Technica.


V777999/iStock.

As you can imagine, the website works best with browsers like Google Chrome, Safari, Firefox, Brave, and Edge while it’d be funny to expect some good results with Internet Explorer 1.0 and 2.0.

Discovery of intriguing material behavior at small scales could reduce energy demands for computing.

As become smaller and smaller, the materials that power them need to become thinner and thinner. Because of this, one of the key challenges scientists face in developing next-generation energy-efficient electronics is discovering materials that can maintain special electronic properties at an ultrathin size.

Advanced materials known as ferroelectrics present a promising solution to help lower the power consumed by the ultrasmall electronic devices found in cell phones and computers. Ferroelectrics—the electrical analog to ferromagnets—are a class of materials in which some of the atoms are arranged off-center, leading to a spontaneous internal electric charge or polarization. This internal polarization can reverse its direction when scientists expose the material to an external voltage. This offers great promise for ultralow-power microelectronics.

With Executive Order 14028, a large regulatory push toward mandating the production of a software bill of materials (SBOM) began. As this new buzzword spreads, you’d think it was a miracle cure for securing the software supply chain. Conceptually, it makes sense — knowing what is in a product is a reasonable expectation. However, it is important to understand what exactly an SBOM is and whether or not it can objectively be useful as a security tool.

SBOMs are meant to be something like a nutrition label on the back of a grocery store item listing all of the ingredients that went into making the product. While there currently is no official SBOM standard, a few guideline formats have emerged as top candidates. By far, the most popular is the Software Data Package Exchange (SPDX), sponsored by the Linux Foundation.

SPDX, as with most other formats, attempts to provide a common way to represent basic information about the ingredients that go into the production of software: names, versions, hashes, ecosystems, ancillary data like known flaws and license information, and relevant external assets. However, software is not as simple as a box of cereal, and there is no equivalent to the Food and Drug Administration enforcing compliance to any recommended guidelines.

The tremendous rise in the economic burden of type 2 diabetes (T2D) has prompted a search for alternative and less expensive medicines. Dandelion offers a compelling profile of bioactive components with potential anti-diabetic properties. The Taraxacum genus from the Asteraceae family is found in the temperate zone of the Northern hemisphere. It is available in several areas around the world. In many countries, it is used as food and in some countries as therapeutics for the control and treatment of T2D. The anti-diabetic properties of dandelion are attributed to bioactive chemical components; these include chicoric acid, taraxasterol (TS), chlorogenic acid, and sesquiterpene lactones. Studies have outlined the useful pharmacological profile of dandelion for the treatment of an array of diseases, although little attention has been paid to the effects of its bioactive components on T2D to date. This review recapitulates previous work on dandelion and its potential for the treatment and prevention of T2D, highlighting its anti-diabetic properties, the structures of its chemical components, and their potential mechanisms of action in T2D. Although initial research appears promising, data on the cellular impact of dandelion are limited, necessitating further work on clonal β-cell lines (INS-1E), α-cell lines, and human skeletal cell lines for better identification of the active components that could be of use in the control and treatment of T2D. In fact, extensive in-vitro, in-vivo, and clinical research is required to investigate further the pharmacological, physiological, and biochemical mechanisms underlying the effects of dandelion-derived compounds on T2D.

Keywords: type 2 diabetes, dandelion, chlorogenic acid, chicory acid, taraxasterol, sesquiterpene.

Abbreviations: ADP — adenosine diphosphate; AFLD — alcoholic fatty liver disease; AMPK — adenosine monophosphate-activated protein kinase; ATP — adenosine triphosphate; cAMP — cyclic adenosine monophosphate; CGA — chlorogenic acid; CoA — coenzyme A; CRA — chicory acid; DAG — diacylglycerol; DBD — DNA-binding domain; DNA — deoxyribonucleic acid; DPPH — 2,2-diphenyl-1-picrylhydrazyl; Dw — dry weight; FOS — fructose oligosaccharide; G6P — glucose-6-phosphate; GDP — guanosine 5’-diphosphate; GLP-1 — glucagon-like peptide 1; GLUT2 — glucose transporter 2; GLUT4 — muscle glucose transporter protein 4; GPCR — G protein-coupled receptor; GTP — guanosine triphosphate; HNB — 2-hydroxy-5-nitrobenzenaledehyde; HPLC — high-pressure liquid chromatography; IC50 — half maximal inhibitory concentration; IDF — International Diabetes Federation; IDX-1 — islet duodenum homeobox 1; IL-1α — interleukin 1 alpha; INS-1E — rat insulinoma clonal beta-cell line; IR — insulin receptor; IRS-1 — insulin receptor substrate 1; Km — Michaelis constant; IP3 — inositol triphosphate; IRS-1 — insulin receptor substrate 1; LBD — ligand-binding domain; LC-DAD — liquid chromatography with (photo) diode array detection; LPS — lipopolysaccharide; MAPK — mitogen-activated protein kinase; NADH — nicotinamide adenine dinucleotide; NAFLD — non-alcoholic fatty liver disease; NF-κb — nuclear factor kappa B; NO — nitric oxide; PI3K — phosphatidylinositol 3 kinase; PKA — protein kinase A; PKC — protein kinase C; PPAR-γ — peroxisome proliferator-activated receptor gamma; ROS — reactive oxygen species; RxR — retinoid X receptor; SEL — sesquiterpene lactones; SUR1 — sulphonylurea receptor 1; T2D — type 2 diabetes; TAG — triacylglycerol; TNF-α — tumor necrosis factor; TO — Taraxacum officinale; TS — taraxasterol; UPLC-MS/MS — ultra-performance liquid chromatography — tandem mass spectrometry; UV/VIS — ultraviolet visible; WHO — World Health Organization.

This could enable for microgrids for sewage disposal and more lucrative businesses in waste reclaiming through making essentially computers with waste.


A synthesis procedure developed by NITech scientists can convert fish scales obtained from fish waste into a useful carbon-based nanomaterial. Their approach uses microwaves to break the scales down thermally via pyrolysis in less than 10 seconds, yielding carbon nano-onions with unprecedented quality compared with those obtained from conventional methods. Credit: Takashi Shirai from NITech, Japan.

Carbon-based nanomaterials are increasingly being used in electronics, energy conversion and storage, catalysis, and biomedicine due to their low toxicity, chemical stability, and extraordinary electrical and optical properties. CNOs, or carbon nano-onions, are by no means an exception. CNOs, which were first described in 1980, are nanostructures made up of concentric shells of fullerenes that resemble cages inside cages. They have several desired qualities, including a large surface area and high electrical and thermal conductivities.

Unfortunately, there are also significant disadvantages to using conventional methods to produce CNOs. Some call for harsh synthesis conditions, including high temperatures or vacuum, while others demand a great deal of time and energy. While certain methods may get beyond these limitations, they still need complicated catalysts, expensive carbon sources, or potentially hazardous acidic or basic conditions. This severely restricts CNOs’ potential.