Toggle light / dark theme

Femtotech: Computing at the femtometer scale using quarks and gluons.
How the properties of quarks and gluons can be used (in principle) to perform computation at the femtometer (10^−15 meter) scale.

I’ve been thinking on and off for two decades about the possibility of a femtotech. Now that nanotech is well established, and well funded, I feel that the time is right to start thinking about the possibility of a femtotech.

You may ask, “What about picotech?” — technology at the picometer (10-12m) scale. The simple answer to this question is that nature provides nothing at the picometer scale. An atom is about 10–10 m in size.

The next smallest thing in nature is the nucleus, which is about 100,000 times smaller, i.e., 10–15 m in size — a femtometer, or “fermi.” A nucleus is composed of protons and neutrons (i.e., “nucleons”), which we now know are composed of 3 quarks, which are bound (“glued”) together by massless (photon-like) particles called “gluons.”

Hence if one wanted to start thinking about a possible femtotech, one would probably need to start looking at how quarks and gluons behave, and see if these behaviors might be manipulated in such a way as to create a technology, i.e., computation and engineering (building stuff).

In this essay, I concentrate on the computation side, since my background is in computer science. Before I started ARCing (After Retirement Careering), I was a computer science professor who gave himself zero chance of getting a grant from conservative NSF or military funders in the U.S. to speculate on the possibilities of a femtotech. But now that I’m no longer a “wager,” I’m free to do what I like, and can join the billion strong “army” of ARCers, to pursue my own passions.

Quantum technology holds immense promise, yet it is riddled with complexity. Anticipated to usher in a slew of technological advancements in the upcoming decades, it is set to offer us more compact and accurate sensors, robustly secure communication networks, and high-capacity computers. These advancements will outpace the capabilities of present computing technologies, aiding in the swift development of new drugs and materials, controlling financial markets, and enhancing weather forecasting.

To realize these benefits, we require what are termed as quantum materials, which display significant quantum physical effects. One such material is graphene.

Graphene is an allotrope of carbon in the form of a single layer of atoms in a two-dimensional hexagonal lattice in which one atom forms each vertex. It is the basic structural element of other allotropes of carbon, including graphite, charcoal, carbon nanotubes, and fullerenes. In proportion to its thickness, it is about 100 times stronger than the strongest steel.

Scientists at the National Institute of Standards and Technology (NIST) with colleagues elsewhere have employed neutron imaging and a reconstruction algorithm to reveal for the first time the 3D shapes and dynamics of very small tornado-like atomic magnetic arrangements in bulk materials.

These collective atomic arrangements, called skyrmions—if fully characterized and understood—could be used to process and store information in a densely packed form that uses several orders of magnitude less energy than is typical now.

The conventional, semiconductor-based method of processing information in binary form (on or off, 0 or 1) employs electrical charge states that must be constantly refreshed by current which encounters resistance as it passes through transistors and connectors. That’s the main reason that computers get hot.

A team of computer scientists at UC Riverside has developed a new method to detect manipulated facial expressions in deep fake videos. The method could detect these expressions with up to 99% accuracy, making it more accurate than the current state-of-the-art methods.

The new research paper titled “Detection and Localization of Facial Expression Manipulations” was presented at the 2022 Winter Conference on Applications of Computer Vision.

Detecting Any Facial Manipulation

Researchers have created chip-based photonic resonators that operate in the ultraviolet (UV) and visible regions of the spectrum and exhibit a record low UV light loss. The new resonators lay the groundwork for increasing the size, complexity and fidelity of UV photonic integrated circuit (PIC) design, which could enable new miniature chip-based devices for applications such as spectroscopic sensing, underwater communication and quantum information processing.

“Compared to the better-established fields like telecom photonics and visible photonics, UV photonics is less explored even though UV wavelengths are needed to access certain atomic transitions in atom/ion-based quantum computing and to excite certain fluorescent molecules for biochemical sensing,” said research team member Chengxing He from Yale University. “Our work sets a good basis toward building photonic circuits that operate at UV wavelengths.”

In Optics Express, the researchers describe the alumina-based optical microresonators and how they achieved an unprecedented low loss at UV wavelengths by combining the right material with optimized design and fabrication.

Chinese researchers are working on ways to develop their own semiconductor lithography process to compete with ASML.

Researchers at Tsinghua University are working to bring microchip production to China to bypass US sanctions, reports the South China Morning Post.

Using a new method called steady-state microbunching (SSMB), the team believes this new technique could be employed to mass produce high-quality microchips and reduce China’s dependence on lithography systems from the likes of industry giants like Advanced Semiconductor Materials Lithography (ASML).

At the meeting with Modi, Sharma presented the prime minister with a cutting-edge 5G millimeter-wave and sub-6-gigahertz chipset designed by Renesas’s R&D teams in Bengaluru and San Diego.

“The prime minister displayed a genuine fascination with the chipset and talked about the technical intricacies of the integrated chip,” the IEEE member says. “He asked about the silicon node and the fabrication facility that created it.

I firmly believe the development of these critical chips is vital for the greater public good, Sharma says. Those working in industry can be change agents and have a meaningful impact on society, such as advancing technology for humanity. After all, that is the motto of IEEE.