Toggle light / dark theme

On-chip GHz time crystals with semiconductor photonic devices pave way to new physics and optoelectronic applications

Since Nobel-Prize-winning physicist Frank Wilczek first proposed his theory over a decade ago, researchers have been on the search for elusive “time crystals”—many-body systems composed of particles and quasiparticles like excitons, photons, and polaritons that, in their most stable quantum state, vary periodically in time.

Wilczek’s theory centered around a puzzling question: Can the most stable state of a quantum system of many particles be periodic in time? That is, can it display temporal oscillations characterized by a beating with a well-defined rhythm?

It was quite rapidly shown that time crystal behavior cannot occur in isolated systems (systems which do not exchange energy with the surrounding environment). But far from closing the subject, this disturbing question motivated scientists to search for the conditions under which an open system (i.e., one that exchanges energy with the environment) may develop such time crystal behavior.

Supercapacitor Discovery Could Allow Laptops to be Charged in Just 1 Minute, Engineer Claims

A new discovery could pave the way for supercapacitors that can charge phones and laptops in 60 seconds and electric cars in a mere ten minutes.

In a press release, the University of Colorado at Boulder announced that its researchers have achieved a breakthrough when it comes to our understanding of the way charged ion particles behave — a discovery that could be the key to figuring out the logistics for the long-anticipated energy storage capabilities of supercapacitors.

Supercapacitors have long been proposed as a means of charging electronics lightning-fast, but until now, figuring out how to increase the energy density to match or exceed those of lithium-ion batteries has, for the most part, eluded scientists. Compared to conventional batteries, which can store as much as ten times more energy than today’s supercapacitors, this technology has remained in the realm of the possible but not yet practical.

Precision’s Brain Chip Sets Record with 4,096 Electrodes on Brain, Better Than Neuralink?

In this new standard set by Precision Neuroscience, the rising brain chip industry is seeing significant growth, especially with Neuralink, also known for its first successful implant in the past.

Precision’s Brain Chip Sets Record With 4.096 Electrodes on Brain

Precision Neuroscience shared its latest milestone on its brain-computer interface (BCI), which it recently placed on a human brain in collaboration with the Mount Sinai Health System, successfully placing 4,096 electrodes on cerebral matter.

New device precisely controls photon emission for more efficient portable screens

Recently, a team of chemists, mathematicians, physicists and nano-engineers at the University of Twente in the Netherlands developed a device to control the emission of photons with unprecedented precision. This technology could lead to more efficient miniature light sources, sensitive sensors, and stable quantum bits for quantum computing.

Exploring Uncharted Territory: Physicists Unveil Infinite Possibilities of Quantum States

A new method developed by Amsterdam researchers uses non-Gaussian states to efficiently describe and configure quantum spin-boson systems, promising advancements in quantum computing and sensing.

Many modern quantum devices operate using groups of qubits, or spins, which have just two energy states: ‘0’ and ‘1’. However, in actual devices, these spins also interact with photons and phonons, collectively known as bosons, making the calculations much more complex. In a recent study published in Physical Review Letters, researchers from Amsterdam have developed a method to effectively describe these spin-boson systems. This breakthrough could help in efficiently setting up quantum devices to achieve specific desired states.

Quantum devices use the quirky behavior of quantum particles to perform tasks that go beyond what ‘classical’ machines can do, including quantum computing, simulation, sensing, communication, and metrology. These devices can take many forms, such as a collection of superconducting circuits, or a lattice of atoms or ions held in place by lasers or electric fields.

Water-based circuit concept switches much faster than semiconductors

Water is usually something you’d want to keep away from electronic circuits, but engineers in Germany have now developed a new concept for water-based switches that are much faster than current semiconductor materials.

Transistors are a fundamental component of electronic systems, and in a basic sense they process data by switching between conductive and non-conductive states – zeroes and ones – as the semiconductor materials in them encounter electrical currents. The speed of this switching (along with the number of transistors in a chip) is a primary factor in how fast a computer system can be.

Now, researchers at Ruhr University Bochum have developed a new type of circuit that can switch much faster than existing semiconductor materials. The key ingredient is, surprisingly, water, with iodide ions dissolved into it to make it salty. A custom-made nozzle fans this water out into a flattened jet only a few microns thick.

/* */