Menu

Blog

Archive for the ‘computing’ category: Page 198

Mar 25, 2023

A cavity leads to a strong interaction between light and matter

Posted by in categories: computing, particle physics, quantum physics

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a and a is a huge challenge due to the tiny size of the atom. However, sending the past the atom several times by means of mirrors significantly increases the probability of an interaction.

In order to generate photons, the researchers use artificial atoms, known as . These semiconductor structures consist of an accumulation of tens of thousands of atoms, but behave much like a single atom: when they are optically excited, their energy state changes and they emit a photon. “However, they have the technological advantage that they can be embedded in a ,” says Dr. Daniel Najer, who conducted the experiment at the Department of Physics at the University of Basel.

Mar 25, 2023

Digital restoration of historical documents

Posted by in categories: computing, space

One of the best ways to learn about any historical period is by conversing with the people who lived through it. Speaking with people from the distant past is very one-sided, as they are typically dead and have stopped listening long ago. However, they speak volumes if you have the patience to listen, or rather, read what they say in letters, diaries and primitive post-it notes with no sticky back sides.

An international group of computer scientists from Italy, the U.K. and Pakistan have teamed up to resurrect the dead from writings that have been degraded by time by developing a computer-assisted method to virtually return documents to a more legible and decipherable condition. In their research paper, “Restoration and content analysis of ancient manuscripts via color space based segmentation,” published in the journal PLOS ONE, the team details their digital restoration technique’s method and experimental results.

We get a sense of ancient civilizations from their writings, both trivial and profound. The Sumerian cuneiform writing on reveals 4,000-year-old merchant transactions, geometric calculations, and poetry detailing the fall of a great city. Had they been written on paper and not in clay we would likely not have them today.

Mar 25, 2023

Michael Levin: Epigenetic Adaptation, Bioelectricity, Anatomical Compiler — Learning with Lowell 170

Posted by in categories: biotech/medical, computing, genetics, life extension, neuroscience

Michael Levin is a biologist at Tufts University working on novel ways to understand and control complex pattern formation in biological systems.

Michael Levin links.
Michael’s Twitter: https://twitter.com/drmichaellevin.
Michael’s Website: https://drmichaellevin.org.

Continue reading “Michael Levin: Epigenetic Adaptation, Bioelectricity, Anatomical Compiler — Learning with Lowell 170” »

Mar 24, 2023

New experiment translates quantum information between technologies in an important step for the quantum internet

Posted by in categories: computing, internet, particle physics, quantum physics

Researchers have discovered a way to “translate” quantum information between different kinds of quantum technologies, with significant implications for quantum computing, communication, and networking.

The research was published in the journal Nature on Wednesday. It represents a new way to convert from the format used by quantum computers to the format needed for quantum communication.

Photons—particles of light—are essential for , but different technologies use them at different frequencies. For example, some of the most common technology is based on , such as those used by tech giants Google and IBM; these qubits store quantum information in that move at microwave frequencies.

Mar 24, 2023

Quantum light manipulation breakthrough could lead to advances in computing and metrology

Posted by in categories: computing, quantum physics

The researchers observed it stimulated light emission, which Einstein predicted in 1916, in single photons for the first time.

A team of researchers from the University of Basel and the University of Sydney accomplished a groundbreaking feat by demonstrating the capability to manipulate and identify small numbers of interacting packets of light energy or photons with high correlation for the first time.

The achievement, published in Nature Physics, marks a significant milestone in developing quantum technologies. The researchers observed it stimulated light emission, which Einstein predicted in 1916, in single photons for the first time.

Mar 24, 2023

Confused by quantum computing? Students are developing a puzzle game to help

Posted by in categories: computing, entertainment, quantum physics

UArizona students have developed an online game modeled after the popular ‘tangram’ puzzle game. The game is meant to help teach quantum computation concepts to people ranging from young students to researchers.

Mar 23, 2023

How Quantum Computers Break The Internet… Starting Now

Posted by in categories: computing, encryption, information science, internet, mathematics, quantum physics

A quantum computer in the next decade could crack the encryption our society relies on using Shor’s Algorithm. Head to https://brilliant.org/veritasium to start your free 30-day trial, and the first 200 people get 20% off an annual premium subscription.

▀▀▀
A huge thank you to those who helped us understand this complex field and ensure we told this story accurately — Dr. Lorenz Panny, Prof. Serge Fehr, Dr. Dustin Moody, Prof. Benne de Weger, Prof. Tanja Lange, PhD candidate Jelle Vos, Gorjan Alagic, and Jack Hidary.

Continue reading “How Quantum Computers Break The Internet… Starting Now” »

Mar 23, 2023

‘Inkable’ nanomaterial promises big benefits for bendable electronics

Posted by in categories: chemistry, computing, mobile phones, nanotechnology

An international team of scientists is developing an inkable nanomaterial that they say could one day become a spray-on electronic component for ultra-thin, lightweight and bendable displays and devices.

The material, , could be incorporated into many components of future technologies including mobile phones and computers, thanks to its versatility and recent advances in nanotechnology, according to the team.

RMIT University’s Associate Professor Enrico Della Gaspera and Dr. Joel van Embden led a team of global experts to review production strategies, capabilities and potential applications of zinc oxide nanocrystals in the journal Chemical Reviews.

Mar 23, 2023

Laser-cooled atoms bring networks of quantum computers a step closer

Posted by in categories: computing, particle physics, quantum physics

Rubidium atoms are used to convert between millimetre-wave photons and optical-wavelength photons.

Mar 23, 2023

Spacecraft traveling through a wormhole could send messages home

Posted by in categories: computing, cosmology

A probe going through a wormhole should be able to send messages home before such a tunnel forever closes, a new computer model finds.