Toggle light / dark theme

The ‘ten electron’ rule provides guidance for the design of single-atom alloy catalysts for targeted chemical reactions.

A collaborative team across four universities have discovered a very simple rule to design single-atom alloy catalysts for chemical reactions. The ‘ten electron rule’ helps scientists identify promising catalysts for their experiments very rapidly. Instead of extensive trial and error experiments of computationally demanding computer simulations, catalysts’ composition can be proposed simply by looking at the periodic table.

Single-atom alloys are a class of catalysts made of two metals: a few atoms of reactive metal, called the dopant, are diluted in an inert metal (copper, silver, or gold). This recent technology is extremely efficient at speeding up chemical reactions but traditional models don’t explain how they work.

After half a year of knowing nothing technically about the Apple Vision Pro, Apple has spelled out many of the specs of the unit. Here’s what you need to know.

For Apple’s own reasons, it’s been reticent to detail the Apple Vision Pro. However, when the Apple Store came back up, there was a new technical specs page attached to the order page, and now on the company’s homepage.

Undisclosed at launch, there are three storage capacities. Apple Vision Pro headsets come in 256GB, 512GB, and 1TB storage configurations. At this time, it doesn’t appear that RAM quantities differ as they do in the iPad as storage configurations climb, as the spec sheet claims a universal 16GB of RAM across all units.

A research team led by Lawrence Berkeley National Laboratory (Berkeley Lab) has developed “supramolecular ink,” a new technology for use in OLED (organic light-emitting diode) displays or other electronic devices. Made of inexpensive, Earth-abundant elements instead of costly scarce metals, supramolecular ink could enable more affordable and environmentally sustainable flat-panel screens and electronic devices.

“By replacing precious metals with Earth-abundant materials, our ink technology could be a game changer for the OLED industry,” said principal investigator Peidong Yang, a faculty senior scientist in Berkeley Lab’s Materials Sciences Division and professor of chemistry and materials science and engineering at UC Berkeley.

“What’s even more exciting is that the technology could also extend its reach to organic printable films for the fabrication of wearable devices as well as luminescent art and sculpture,” he added.

For the past decade, researchers have been exploring hafnia’s ferroelectric properties, particularly in a crystal phase where it exhibits electric polarization.


To revolutionize high-performance computing, scientists and engineers are making strides in harnessing the potential of hafnium oxide, commonly known as hafnia. The latest study outlines processes for manipulating hafnia, aiming to pave the way for the next generation of computing memory.

For the past decade, researchers have explored hafnia’s ferroelectric properties, particularly in a crystal phase exhibiting electric polarization.

“Hafnia is a very exciting material because of its practical applications in computer technology, especially for data storage,” explained Singh, an assistant professor in the Department of Mechanical Engineering at the University of Rochester, in a press release. Unlike current magnetic forms of memory that are slow, energy-intensive, and inefficient, ferroelectric memory offers non-volatility, retaining values even when powered off.

PRESS RELEASE — It is hard to imagine our lives without networks such as the internet or mobile phone networks. In the future, similar networks are planned for quantum technologies that will enable the tap-proof transmission of messages using quantum cryptography and make it possible to connect quantum computers to each other.

Like their conventional counterparts, such quantum networks require memory elements in which information can be temporarily stored and routed as needed. A team of researchers at the University of Basel led by Professor Philipp Treutlein has now developed such a memory element, which can be micro-fabricated and is, therefore, suitable for mass production. Their results were recently published in the scientific journal Physical Review Letters.

Organic mixed ionic–electronic conductors (OMIECs) are a highly sought-after class of materials for non-conventional applications, such as bioelectronics, neuromorphic computing, and bio-fuel cells, due to their two-in-one electronic and ionic conduction properties.

To ensure a much wider acceptance of these fascinating materials, there is a need to diversify their properties and develop techniques that allow application-specific tailoring of the features of OMIEC-based devices.

A crucial aspect of this process is to develop strategies for evaluating the various properties of these materials. However, despite the increasing popularity of OMIECs, there is a severe lack of research on the molecular orientation-dependent transient behaviors of such conductors.

Skoltech researchers and their colleagues from MIPT and China’s Center for High Pressure Science and Technology Advanced Research have computationally explored the stability of the bizarre compounds of hydrogen, lanthanum, and magnesium that exist at very high pressures. In addition to matching the various three-element combinations to the conditions at which they are stable, the team discovered five completely new compounds of hydrogen and either magnesium or lanthanum only.

Published in Materials Today Physics, the study is part of the ongoing search for room-temperature superconductors, the discovery of which would have enormous consequences for power engineering, transportation, computers and more.

“In the previously unexplored system of hydrogen, lanthanum, and magnesium, we find LaMg3H28 to be the ‘warmest’ superconductor. It loses below −109°C, at about 2 million atmospheres—not a record, but not bad at all either,” the study’s principal investigator, Professor Artem R. Oganov of Skoltech, commented.