Menu

Blog

Archive for the ‘computing’ category: Page 190

Mar 22, 2023

New microchip links two Nobel Prize-winning techniques

Posted by in categories: biotech/medical, computing, health

Physicists at Delft University of Technology have built a new technology on a microchip by combining two Nobel Prize-winning techniques for the first time. This microchip could measure distances in materials at high precision—for example, underwater or for medical imaging.

Because the technology uses sound vibrations instead of light, it is useful for high-precision position measurements in opaque materials. The instrument could lead to new techniques to monitor the Earth’s climate and human health. The work is now published in Nature Communications.

The microchip mainly consists of a thin ceramic sheet that is shaped like a trampoline. This trampoline is patterned with holes to enhance its interaction with lasers and has a thickness about 1,000 times smaller than the thickness of a hair. As a former Ph.D. candidate in Richard Norte’s lab, Matthijs de Jong studied the small trampolines to figure out what would happen if they pointed a simple at them.

Mar 21, 2023

Cleveland Clinic Gets Its Own IBM Quantum Processor For Advanced Biomedical Research

Posted by in categories: biotech/medical, computing, quantum physics

This appears to be the year that IBM’s Quantum Computing program reaches the tipping point. IBM and the Cleveland Clinic Foundation just announced the first deployment of an onsite, private sector, IBM-managed quantum computer in the United States. However, beyond the placement of a 127-qubit IBM Eagle quantum processor in a cafeteria at Cleveland Clinic’s main campus, this announcement signals a major leap forward for quantum computing applications.

Of course, the most immediate question is, why install a quantum computer in a cafeteria? Although this may seem like a frivolous question, it gets to a major point of this article. The IBM Eagle class quantum processor has been installed in a highly visible location in the Cleveland Clinic so that biomedical researchers and physicians can start thinking about the most productive ways to use this resource. These are very early days for the development of quantum computing applications, so installing the IBM Eagle quantum processor in the cafeteria, visited daily by nearly everyone working at the Cleveland Clinic, seems like an extremely creative way of keeping the machine ever present in the minds of people working at the facility.

Dr Lara Jehi, who became Cleveland Clinic’s first Chief Research Information Officer in 2020, said that there are many areas of interest in medical research with computational ceilings that block further advances. Quantum processing may help break through those ceilings. Researchers at Cleveland Clinic, working with IBM data scientists, combed through the possible avenues for research, discipline by discipline, to identify the projects most likely to bear fruit when matched to quantum processing’s current capabilities. “Quantum is still a nascent technology,” said Jehi.

Mar 21, 2023

Scientists ‘control’ quantum light for the first time, achieving landmark

Posted by in categories: biotech/medical, computing, quantum physics

“We have taken a vital first step towards harnessing quantum light for practical use.”

Scientists have for the first time shown that they can control and distinguish tiny quantities of interacting photons — or packets of light energy — with high correlation, according to a study published in Nature.

Harnessing quantum light for practical use.

Continue reading “Scientists ‘control’ quantum light for the first time, achieving landmark” »

Mar 21, 2023

Research team finds indirect evidence for existence of dark matter surrounding black holes

Posted by in categories: computing, cosmology

Dark matter does not emit or reflect light, nor does it interact with electromagnetic forces, making it exceptionally difficult to detect. Nevertheless, a research team from The Education University of Hong Kong (EdUHK) has proven that there is a substantial amount of dark matter surrounding black holes. The study results are published in the journal The Astrophysical Journal Letters.

The team selected two nearby (A0620-00 and XTE J1118+480) as research subjects, with both considered as binary systems. That is, each of the black holes has a companion star orbiting it. Based on the orbits of the companion stars, observations indicate that their rates of orbital decay are approximately one millisecond (1ms) per year, which is about 50 times greater than the theoretical estimation of about 0.02ms annually.

To examine whether exists around black holes, the EdUHK team applied the “dark matter dynamical friction model”—a theory widely held in academia—to the two chosen binary systems, through computer simulations. The team found that the fast orbital decay of the companion stars precisely matches the data observed.

Mar 21, 2023

Photoexcited electrons from fullerene help create high-speed switch

Posted by in categories: computing, quantum physics

Quantum ‘turnout’ device has a switching speed four to five orders of magnitude faster than that of current solid-state transistors.

Mar 21, 2023

Motors Run Wirelessly With Tesla Coil

Posted by in category: computing

Year 2016 This is a simple set up for running an electric engine without wires with a tesla coil.


This is a small demonstration showing how Tesla’s wireless technology can run motors and other various devices. Although the setup is only using about 500–600 ma, the results are dependable up to about three feet from the transmitter.
John.

Continue reading “Motors Run Wirelessly With Tesla Coil” »

Mar 21, 2023

Did We Just Change Animation Forever?

Posted by in category: computing

ANYONE can make a cartoon with this groundbreaking technique. Want to learn how? We made a ONE-HOUR, CLICK-BY-CLICK TUTORIAL on http://www.corridordigital.com/

Watch the full ROCK PAPER SCISSORS anime on Corridor ► https://youtu.be/GVT3WUa-48Y

Continue reading “Did We Just Change Animation Forever?” »

Mar 19, 2023

The Extinction of Death

Posted by in categories: computing, existential risks, life extension, media & arts

Billionaires like Jeff Bezos, Peter Thiel, and Sam Altman want to live forever, here’s how they’re planning on doing it and what it could mean for society.

First ‘long form’ video I have made in awhile. Very excited to get back into it and play around with different ways of styles and editing. Excited to hear what you guys think!

Continue reading “The Extinction of Death” »

Mar 18, 2023

NASA Dragonfly Bound for Saturn’s Giant Moon Titan Could Reveal Chemistry Leading to Life

Posted by in categories: chemistry, computing, space

Saturn ’s giant moon, Titan, is due to launch in 2027. When it arrives in the mid-2030s, it will begin a journey of discovery that could bring about a new understanding of the development of life in the universe. This mission, called Dragonfly, will carry an instrument called the Dragonfly Mass Spectrometer (DraMS), designed to help scientists hone in on the chemistry at work on Titan. It may also shed light on the kinds of chemical steps that occurred on Earth that ultimately led to the formation of life, called prebiotic chemistry.

Titan’s abundant complex carbon-rich chemistry, interior ocean, and past presence of liquid water on the surface make it an ideal destination to study prebiotic chemical processes and the potential habitability of an extraterrestrial environment.

Continue reading “NASA Dragonfly Bound for Saturn’s Giant Moon Titan Could Reveal Chemistry Leading to Life” »

Mar 18, 2023

Qubits put new spin on magnetism: Boosting applications of quantum computers

Posted by in categories: computing, quantum physics

Research using a quantum computer as the physical platform for quantum experiments has found a way to design and characterize tailor-made magnetic objects using quantum bits, or qubits. That opens up a new approach to develop new materials and robust quantum computing.

“With the help of a quantum annealer, we demonstrated a new way to pattern ,” said Alejandro Lopez-Bezanilla, a virtual experimentalist in the Theoretical Division at Los Alamos National Laboratory. Lopez-Bezanilla is the corresponding author of a paper about the research in Science Advances.

“We showed that a magnetic quasicrystal lattice can host states that go beyond the zero and one bit states of classical information technology,” Lopez-Bezanilla said. “By applying a to a finite set of spins, we can morph the magnetic landscape of a quasicrystal object.”