Menu

Blog

Archive for the ‘computing’ category: Page 188

Aug 17, 2022

The Power of Brain-Computer Interfaces | TVS

Posted by in categories: biotech/medical, computing, cyborgs, neuroscience, virtual reality

A Brain-Computer Interface (BCI) is a promising technology that has received increased attention in recent years. BCIs create a direct link from your brain to a computer. This technology has applications to many industries and sectors of our life. BCIs redefine how we approach medical treatment and communication for individuals with various conditions or injuries. BCIs also have applications in entertainment, specifically video games and VR. From being able to control a prosthetic limb with your mind, to being able to play a video game with your mind—the potential of BCIs are endless.

What are your thoughts on Brain-Computer Interfaces? Let us know!
Any disruptive technologies you would like us to cover? Dm us on our Instagram (@toyvirtualstructures).
—————–
Check out our curated playlists:
https://www.youtube.com/channel/UCr5Akn6LhGDin7coWM7dfUg/playlists.
—————–
Media Used:

Continue reading “The Power of Brain-Computer Interfaces | TVS” »

Aug 16, 2022

Breaking: Scientists Have Reversed Time with a Quantum Computer

Posted by in categories: computing, quantum physics

Scientists have reversed the direction of time with a quantum computer.

The breakthrough study seems to contradict basic laws of physics and could alter our understanding of the processes governing the universe.

In a development that also represents a major advance in our understanding of quantum computers, by using electrons and the strange world of quantum mechanics, researchers were able to turn back time in an experiment that is the equivalent of causing a broken rack of pool balls to go back into place.

Aug 16, 2022

Scientists blast atoms with Fibonacci laser to make an “extra” dimension of time

Posted by in categories: computing, particle physics, quantum physics

The new phase of matter, created by using lasers to rhythmically jiggle a strand of 10 ytterbium ions, enables scientists to store information in a far more error-protected way, thereby opening the path to quantum computers that can hold on to data for a long time without becoming garbled. The researchers outlined their findings in a paper published July 20 in the journal Nature (opens in new tab).

Aug 16, 2022

Nanomaterials pave the way for the next computing generation

Posted by in categories: computing, nanotechnology

Technology on the nanometre scale could provide solutions to move on from the solid-state era.

Aug 16, 2022

The entanglement of two quantum memory systems 12.5 km apart from each other

Posted by in categories: computing, internet, quantum physics

Quantum computing technology could have notable advantages over classical computing technology, including a faster speed and the ability to tackle more complex problems. In recent years, some researchers have also been exploring the possible establishment of a “quantum internet,” a network that would allow quantum devices to exchange information, just like classical computing devices exchange information today.

Aug 16, 2022

Synapses as a model: Solid-state memory in neuromorphic circuits

Posted by in categories: biological, chemistry, computing, neuroscience

Certain tasks—such as recognizing patterns and language—are performed highly efficiently by a human brain, requiring only about one ten-thousandth of the energy of a conventional, so-called “von Neumann” computer. One of the reasons lies in the structural differences: In a von Neumann architecture, there is a clear separation between memory and processor, which requires constant moving of large amounts of data. This is time-and energy-consuming—the so-called von Neumann bottleneck. In the brain, the computational operation takes place directly in the data memory and the biological synapses perform the tasks of memory and processor at the same time.

In Forschungszentrum Jülich, scientists have been working for more than 15 years on special data storage devices and components that can have similar properties to the synapses in the human brain. So-called memristive memory devices, also known as , are considered to be extremely fast and energy-saving, and can be miniaturized very well down to the nanometer range. The functioning of memristive cells is based on a very special effect: Their electrical resistance is not constant, but can be changed and reset again by applying an external voltage, theoretically continuously. The change in resistance is controlled by the movement of oxygen ions. If these move out of the semiconducting metal oxide layer, the material becomes more conductive and the electrical resistance drops. This change in resistance can be used to store information.

The processes that can occur in cells are complex and vary depending on the material system. Three researchers from the Jülich Peter Grünberg Institute—Prof. Regina Dittmann, Dr. Stephan Menzel, and Prof. Rainer Waser—have therefore compiled their research results in a detailed review article, “Nanoionic memristive phenomena in metal oxides: the valence change mechanism.” They explain in detail the various physical and chemical effects in memristors and shed light on the influence of these effects on the switching properties of memristive cells and their reliability.

Aug 16, 2022

Researchers develop the world’s fastest two-qubit gate between two single atoms

Posted by in categories: computing, particle physics, quantum physics

The two-qubit gate can be reached in 6.9 nanoseconds.

* A research group succeeded in executing the world’s fastest two-qubit gate. * Quantum computers and optical tweezers were used to conduct the research. * It is used an ultrafast laser to manipulate cold atoms.

The world’s fastest two-qubit gate has been executed in 6.5 nanoseconds by a group of researchers at the National Institutes of Natural Sciences. A research group led by graduate student Yeelai Chew, Assistant Professor Sylvain de Léséleuc, and Professor Kenji Ohmori used atoms cooled to almost absolute zero and trapped in optical tweezers separated by a micron. By manipulating the atoms with special laser light for 10 picoseconds, they executed the world’s fastest two-qubit gate.

Aug 16, 2022

Single-cell-resolved differentiation of human induced pluripotent stem cells into pancreatic duct-like organoids on a microwell chip

Posted by in categories: biotech/medical, computing, life extension

Circa 2021 immortality of the pancreas by inducing pluripotent cells of the pancreas.


A microwell chip facilitates the single-cell characterization of the differentiation of aggregates of human induced pluripotent stem cells into pancreatic duct-like organoids and the discovery of secreted markers of pancreatic carcinogenesis.

Aug 16, 2022

Coin-sized wearable biosensing platform for digital health

Posted by in categories: biotech/medical, chemistry, computing, health, neuroscience, wearables

A team of researchers in the Faculty of Engineering of The University of Hong Kong (HKU) has developed a coin-sized system that can read weak electrochemical signals and can be used for personalized health monitoring and the measurement of such conditions as diabetes, cardiovascular diseases and mental health. The discovery was featured on the cover of Analytical Chemistry.

The PERfECT System—an acronym for Personalized Electronic Reader for Electrochemical Transistors—is the world’s smallest system of its kind, measuring 1.5 cm x 1.5 cm x 0.2 cm and weighing only 0.4 gram. It is easily wearable, for instance integrated with a smartwatch or as a patch, to allow for continuous monitoring of biosignals such as glucose levels and antibody concentrations in blood and even sweat.

Continue reading “Coin-sized wearable biosensing platform for digital health” »

Aug 16, 2022

New quantum whirlpools with tetrahedral symmetries discovered in a superfluid

Posted by in categories: computing, particle physics, quantum physics

An international collaboration of scientists has created and observed an entirely new class of vortices—the whirling masses of fluid or air.

Led by researchers from Amherst College in the U.S. and the University of East Anglia and Lancaster University in the U.K., their new paper details the first laboratory studies of these “exotic” whirlpools in an ultracold gas of atoms at temperatures as low as tens of billionths of a degree above absolute zero.

The discovery, announced this week in the journal Nature Communications, may have exciting future implications for implementations of quantum information and computing.