Toggle light / dark theme

That’ll be a nice tipping point. Now we need to depend less on Taiwan for chip making or move it to the USA and maybe China will lose interest a bit.


The US could soon become a world leader in rare earth minerals after over two billion metric tons were found in Wyoming.

The discovery could mean America taking over China, whose supplies stand at 44 million metric tons.

According to American Rare Earths Inc, the discovery ‘exceeded [their] wildest dreams’ having only drilled around a quarter of the project.

Recent research conducted at Hebrew University has uncovered a previously unknown connection between light and magnetism. This finding paves the way for the development of ultra-fast memory technologies controlled by light, as well as pioneering sensors capable of detecting the magnetic components of light. This advancement is anticipated to transform data storage practices and the fabrication of devices across multiple sectors.

Professor Amir Capua, head of the Spintronics Lab within the Institute of Applied Physics and Electrical Engineering at Hebrew University of Jerusalem, announced a pivotal breakthrough in the realm of light-magnetism interactions. The team’s unexpected discovery reveals a mechanism wherein an optical laser beam controls the magnetic state in solids, promising tangible applications in various industries.

GHZ states are crucial for pushing the boundaries of quantum physics and enhancing quantum computing and communication technologies. However, they become increasingly unstable as more qubits are entangled, with past experiments demonstrating the challenges of preserving their unique properties amidst minor disturbances. By employing a discrete time crystal, the team was able to construct a “safe house” to protect the GHZ state, achieving a less fragile configuration of 36 qubits, compared to the previously unstable larger state that included up to 60 qubits.

The application of microwave pulses to the qubits not only induced their quantum properties to oscillate and form a time crystal but also minimized disturbances that would typically disrupt the GHZ state. This could mark the first practical use of a discrete time crystal, according to Biao Huang, Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences.

Scientists have previously established that light can be slowed down in certain scenarios, and a new study demonstrates a method for achieving it that promises to be one of the most useful approaches yet.

The researchers behind the breakthrough, from Guangxi University and the Chinese Academy of Sciences in China, say that their method could benefit computing and optical communication.

Light zipping through the emptiness of space moves at one speed and one speed only — 299,792 kilometers (about 186,000 miles) per second. Yet if you throw a mess of electromagnetic fields into its path, such as those surrounding ordinary matter, that extraordinary velocity starts to slow.

It’s “Little Shop of Horrors” meets “Terminator.”

A team of scientists successfully took control over a Venus Flytrap, a type of cultivated carnivorous plant, by implanting a tiny microchip in it.

This “artificial neutron” was able to force the plants to open and close — conventionally a way for them to devour its prey — mimicking the brain’s methods of processing and transferring information.

Matching quantum computing with Tensor networks, and varying then to get the data you need. It’s a good read, about 4 minutes and goes into more detail. Apparently there’s no errors like there is in quantum computing with some adjustments.


Quantum computing has long been celebrated for its potential to surpass traditional computing in terms of speed and memory efficiency. This innovative technology promises to revolutionize our ability to predict physical phenomena that were once deemed impossible to forecast.

The essence of quantum computing lies in its use of quantum bits, or qubits, which, unlike the binary digits of classical computers, can represent values anywhere between 0 and 1.

This fundamental difference allows quantum computers to process and store information in a way that could vastly outpace their classical counterparts under certain conditions.

Quantum computing has been hailed as a technology that can outperform classical computing in both speed and memory usage, potentially opening the way to making predictions of physical phenomena not previously possible.

Many see quantum computing’s advent as marking a paradigm shift from classical, or conventional, computing. Conventional computers process information in the form of digital bits (0s and 1s), while quantum computers deploy quantum bits (qubits) to store in values between 0 and 1.

Under certain conditions, this ability to process and store information in qubits can be used to design that drastically outperform their classical counterparts. Notably, quantum’s ability to store information in values between 0 and 1 makes it difficult for to perfectly emulate quantum ones.