Toggle light / dark theme

Researchers observe the quantum coherence of a quintet state with four electron spins in molecular systems for the first time at room temperature.

In a study published in Science Advances, a group of researchers led by Associate Professor Nobuhiro Yanai from Kyushu University’s Faculty of Engineering, in collaboration with Associate Professor Kiyoshi Miyata from Kyushu University and Professor Yasuhiro Kobori of Kobe University, reports that they have achieved quantum coherence at room temperature: the ability of a quantum system to maintain a well-defined state over time without getting affected by surrounding disturbances.

This breakthrough was made possible by embedding a chromophore, a dye molecule that absorbs light and emits color, in a metal-organic framework, or MOF, a nanoporous crystalline material composed of metal ions and organic ligands.

A team of Stony Brook University physicists and their collaborators have taken a significant step toward the building of a quantum internet testbed by demonstrating a foundational quantum network measurement that employs room-temperature quantum memories. Their findings are described in a paper published in the Nature journal Quantum Information.

Research with quantum computing and quantum networks is taking place around the world in the hopes of developing a quantum internet, a network of quantum computers, sensors, and communication devices that will create, process, and transmit quantum states and entanglement. It is anticipated to enhance society’s internet system and provide certain services and securities that the current internet does not have.

The field of quantum information combines aspects of physics, mathematics, and classical computing to use quantum mechanics to solve complex problems much faster than classical computing and to transmit information in an unhackable manner. While the vision of a quantum internet system is growing and the field has seen a surge in interest from researchers and the public at large, accompanied by a steep increase in the capital invested, an actual quantum internet prototype has not been built.

Explore courses in mathematics, science, and computer science with Brilliant. First 200 to use our link https://brilliant.org/sabine will get 20% off the annual premium subscription.

Memory storage technology has come a long way from compact disks. Or has it? In a recent paper, scientists report they were able to fit petabytes of memory onto a compact disk using new laser technologies and advanced material design. Is this the future of data storage? Let’s have a look.

🤓 Check out my new quiz app ➜ http://quizwithit.com/
💌 Support me on Donatebox ➜ https://donorbox.org/swtg.
📝 Transcripts and written news on Substack ➜ https://sciencewtg.substack.com/
👉 Transcript with links to references on Patreon ➜ / sabine.
📩 Free weekly science newsletter ➜ https://sabinehossenfelder.com/newsle
👂 Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl
🔗 Join this channel to get access to perks ➜
/ @sabinehossenfelder.
🖼️ On instagram ➜ / sciencewtg.

#science #sciencenews #technews #tech #technology

The next generation of wireless communication not only requires greater bandwidth at higher frequencies – it also needs a little extra time.

Cornell researchers have developed a semiconductor chip that adds a necessary time delay so signals sent across multiple arrays can align at a single point in space, and without disintegrating. The approach will enable ever-smaller devices to operate at the higher frequencies needed for future 6G communication technology.

The team’s paper, “Ultra-Compact Quasi-True-Time-Delay for Boosting Wireless Channel-Capacity,” published March 6 in Nature. The lead author is Bal Govind, a doctoral student in electrical and computer engineering.

Superconducting circuits, which conduct electricity without resistance, are among the most promising technologies for quantum computing and ultrafast logic circuits. However, finding a practical way to work with these materials that require extremely cold temperatures has been a challenge.

In a step toward that goal, a team of researchers led by Prof. Hong Tang developed and successfully demonstrated a device that presents a viable solution in transferring a very weak signal from a computing device stored at cryogenic temperatures to room temperature electronics to achieve a fast data transfer with very low energy consumption. The results are published in Nature Photonics.

The practical use of superconducting circuits requires connecting them to room temperature electronics. But doing so has largely relied on coaxial cables, which have a limited bandwidth and limited thermal conductivity – two factors that negate the benefits of superconducting circuits.