Toggle light / dark theme

Team proposes new solar composition ratios that could reconcile longstanding questions

“Solar system formation models using the new solar composition successfully reproduce the compositions of large Kuiper Belt objects (KBOs) and carbonaceous chondrite meteorites, in light of the newly returned Ryugu and Bennu asteroid samples from JAXA’s Hayabusa-2 and NASA’s OSIRIS-REx missions.”

To make this discovery, the team combined new measurements of solar neutrinos and data about the solar wind composition from NASA’s Genesis mission, together with the abundance of water found in primitive meteorites that originated in the . They also used the densities of large KBOs such as Pluto and its moon Charon, as determined by NASA’s New Horizons mission.

“This work provides testable predictions for future helioseismology, solar neutrino and cosmochemical measurements, including future comet sample return missions,” Truong said.

Chemists Create ‘Impossible’ Bond in Molecule, Defying 100-Year-Old Rule

Carbon is a gregarious little atom, bending over backwards to link with a wide variety of elements in what is collectively referred to as organic chemistry. Life itself wouldn’t be possible without carbon’s knack for making connections.

Yet even this friendly fellow has its limits. Take Bredt’s rule for instance, which says stable two-laned connections known as covalent double bonds won’t form adjacent to any V-shaped bridges that happen to form across ‘bicyclic’ molecules.

Now a team of chemists from the University of California, Los Angeles has uncovered a solution that violates Bredt’s century-old rule. This encourages future drug research to explore the use of molecules that we thought could not exist.

Google DeepMind open-sources AlphaFold 3, ushering in a new era for drug discovery and molecular biology

Google DeepMind has unexpectedly released the source code and model weights of AlphaFold 3 for academic use, marking a significant advance that could accelerate scientific discovery and drug development. The surprise announcement comes just weeks after the system’s creators, Demis Hassabis and John Jumper, were awarded the 2024 Nobel Prize in Chemistry for their work on protein structure prediction.

AlphaFold 3 represents a quantum leap beyond its predecessors. While AlphaFold 2 could predict protein structures, version 3 can model the complex interactions between proteins, DNA, RNA, and small molecules — the fundamental processes of life. This matters because understanding these molecular interactions drives modern drug discovery and disease treatment. Traditional methods of studying these interactions often require months of laboratory work and millions in research funding — with no guarantee of success.

The system’s ability to predict how proteins interact with DNA, RNA, and small molecules transforms it from a specialized tool into a comprehensive solution for studying molecular biology. This broader capability opens new paths for understanding cellular processes, from gene regulation to drug metabolism, at a scale previously out of reach.

Harnessing Earth’s and Mars’ Temperature Extremes for CO2 Conversion into Fuels

“This paper shows a fun way to make carbon-neutral fuels and chemicals,” said Dr. Curtis P. Berlinguette. “We’ll need plastic on Mars one day, and this technology shows one way we can make it there.”


Can we use the planetary environment of Mars to help power a future colony on the Red Planet? This is what a recent study published in Device hopes to address as a team of researchers investigated how current thermoelectric generators—which can operate in a myriad of environments—on Mars could convert carbon dioxide (CO2) into fuel and other chemicals that can be used for a future Mars colony. This study holds the potential to help scientists, engineers, and the public better understand how a future Mars colony could be managed and operated without constant need for resupply from Earth.

“This is a harsh environment where large temperature differences could be leveraged to not only generate power with thermoelectric generators, but to convert the abundant CO2 in Mars’ atmosphere into useful products that could supply a colony,” said Dr. Abhishek Soni, who is a postdoctoral research fellow at the University of British Columbia (UBC) and lead author of the study.

For the study, the researchers conducted laboratory experiments with a CO2 electrolyzer, which are powered by thermoelectric generators, and a hot plate and ice bath, which obviously provide a wide range of temperatures to see how the CO2 electrolyzer converts CO2 to useful chemicals. In the end, the researchers found when the temperature difference between the ice bath and hot plate was 104 degrees Fahrenheit (40 degrees Celsius), the electrolyzer was still able to successfully convert CO2 to carbon monoxide (CO).

Breakthrough Tech Captures and Destroys “Forever Chemicals” in a Single Process — a Game-Changer for Clean Water

Researchers created a single-step device using redox electrodialysis and electrosorption to capture and destroy diverse PFAS chemicals, aiming to address contamination in water and industrial wastewater.

A study from the University of Illinois Urbana-Champaign is the first to introduce an electrochemical method capable of capturing, concentrating, and destroying diverse PFAS chemicals—including the increasingly common ultra-short-chain PFAS—in water, all in a single process. This breakthrough holds promise for tackling the mounting industrial challenge of PFAS contamination, especially within semiconductor manufacturing.

A previous U. of I. study showed that short-and long-chain PFAS can be removed from water using electrochemically driven adsorption, referred to as electrosorption, but this method is ineffective for ultra-short-chain molecules because of their small size and different chemical properties. The new study, led by Illinois chemical and biomolecular engineering professor Xiao Su, combines a desalination filtration technology, called redox electrodialysis, with electrosorption in a single device to address the problems associated with capturing the complete PFAS size spectrum.

Information Flow in Molecular Machines

A theoretical model shows that exchange of information plays a key role in the molecular machines found in biological cells.

Molecular machines perform mechanical functions in cells such as locomotion and chemical assembly, but these “tiny engines” don’t operate under the same thermodynamic design principles as more traditional engines. A new theoretical model relates molecular-scale heat engines to information engines, which are systems that use information to generate work, like the famous “Maxwell’s demon” [1]. The results suggest that a flow of information lies at the heart of molecular machines and of larger heat engines such as thermoelectric devices.

The prototypical engine is a steam engine, in which work is produced by a fluid exposed to a cycle of hot and cold temperatures. But there are other engine designs, such as the bipartite engine, which has two separate parts held at different temperatures. This design is similar to that of some molecular machines, such as the kinesin motor, which carries “molecular cargo” across biological cells. “Bipartite heat engines are common in biology and engineering, but they really haven’t been studied through a thermodynamics lens,” says Matthew Leighton from Simon Fraser University (SFU) in Canada. He and his colleagues have now analyzed bipartite heat engines in a way that reveals a connection to information engines.

Autonomous mobile robots for exploratory synthetic chemistry

Autonomous laboratories can accelerate discoveries in chemical synthesis, but this requires automated measurements coupled with reliable decision-making.


Much progress has been made towards diversifying automated synthesis platforms4,5,19 and increasing their autonomous capabilities9,14,15,20,21,22. So far, most platforms use bespoke engineering and physically integrated analytical equipment6. The associated cost, complexity and proximal monopolization of analytical equipment means that single, fixed characterization techniques are often favoured in automated workflows, rather than drawing on the wider array of analytical techniques available in most synthetic laboratories. This forces any decision-making algorithms to operate with limited analytical information, unlike more multifaceted manual approaches. Hence, closed-loop autonomous chemical synthesis often bears little resemblance to human experimentation, either in the laboratory infrastructure required or in the decision-making steps.

We showed previously11 that free-roaming mobile robots could be integrated into existing laboratories to perform experiments by emulating the physical operations of human scientists. However, that first workflow was limited to one specific type of chemistry—photochemical hydrogen evolution—and the only measurement available was gas chromatography, which gives a simple scalar output. Subsequent studies involving mobile robots also focused on the optimization of catalyst performance12,13. These benchtop catalysis workflows11,12,13 cannot carry out more general synthetic chemistry, for example, involving organic solvents, nor can they measure and interpret more complex characterization data, such as NMR spectra. The algorithmic decision-making was limited to maximizing catalyst performance11, which is analogous to autonomous synthesis platforms that maximize yield for a reaction using NMR23 or chromatographic10,24 peak areas.

Here we present a modular autonomous platform for general exploratory synthetic chemistry. It uses mobile robots to operate a Chemspeed ISynth synthesis platform, an ultrahigh-performance liquid chromatography–mass spectrometer (UPLC-MS) and a benchtop NMR spectrometer. This modular laboratory workflow is inherently expandable to include other equipment, as shown here by the addition of a standard commercial photoreactor.

Bioinspired hydrogels harness sunlight: A step closer to artificial photosynthesis

Mimicking how plants convert sunlight into energy has long been a dream for scientists aiming to create renewable energy solutions. Artificial photosynthesis is a process that seeks to replicate nature’s method, using sunlight to drive chemical reactions that generate clean energy. However, creating synthetic systems that work as organically as natural photosynthesis has been a significant challenge until now.

Frontiers: Honeybees have been helpful insects since ancient centuries, and this benefit is not limited to being a honey producer only

After the bee stings a person, pain, and swelling occur in this place, due to the effects of bee venom (BV). This is not a poison in the total sense of the word because it has many benefits, and this is due to its composition being rich in proteins, peptides, enzymes, and other types of molecules in low concentrations that show promise in the treatment of numerous diseases and conditions. BV has also demonstrated positive effects against various cancers, antimicrobial activity, and wound healing versus the human immunodeficiency virus (HIV). Even though topical BV therapy is used to varying degrees among countries, localized swelling or itching are common side effects that may occur in some patients. This review provides an in-depth analysis of the complex chemical composition of BV, highlighting the diverse range of bioactive compounds and their therapeutic applications, which extend beyond the well-known anti-inflammatory and pain-relieving effects, showcasing the versatility of BV in modern medicine. A specific search strategy was followed across various databases; Web of sciences, Scopus, Medline, and Google Scholar including in vitro and in vivo clinical studies.to outline an overview of BV composition, methods to use, preparation requirements, and Individual consumption contraindications. Furthermore, this review addresses safety concerns and emerging approaches, such as the use of nanoparticles, to mitigate adverse effects, demonstrating a balanced and holistic perspective. Importantly, the review also incorporates historical context and traditional uses, as well as a unique focus on veterinary applications, setting it apart from previous works and providing a valuable resource for researchers and practitioners in the field.

Bees are commercially beneficial insects that have been around since the Cretaceous age of the Mesozoic Era. They also help fertilize many different crops. Bees are helpful, but their capacity to administer excruciating and poisonous stings constitutes a risk. Thankfully, most honeybees are not hostile to people and only resort to violence if they perceive danger (Pucca et al., 2019). Apis mellifera is the most often used honeybee species for agricultural pollination globally. All bee products, particularly venom, and honey, have been used for centuries, and their medicinal properties have been described in holy writings such as the Bible and the Quran (Ali, 2024; Dinu et al., 2024). Bee venom (BV) treatment involves injecting honeybee venom into the human body to cure various ailments. For over 5,000 years, this technique has been used in complementary therapies.

/* */