Menu

Blog

Archive for the ‘chemistry’ category: Page 92

Sep 19, 2023

World’s most powerful X-ray laser fired for the first time

Posted by in categories: biological, chemistry, physics

With up to a million X-ray flashes a second, the laser will help study mechanisms in physics, chemistry, and biology.

The US Department of Energy’s (DOE) SLAC National Accelerator Laboratory has fired the first X-rays using the upgraded Linac Coherent Light Source (LCLS) X-ray free-electron laser (XFEL), a press release said. The upgraded version, dubbed LCLS-II, was built for $1.1 billion.

Continue reading “World’s most powerful X-ray laser fired for the first time” »

Sep 19, 2023

Light-Triggered Particles Deliver Photoimmunotherapy for Cancer

Posted by in categories: biotech/medical, chemistry, nanotechnology

More noninvasive cancer treatments are being made:

A research group from Japan Advanced Institute of Science and Technology (JAIST) developed light-activatable, liquid metal (LM) nanoparticles for cancer diagnosis and treatment via photoimmunotherapy. The LM nanoparticles can target and destroy cancer cells and can be fluorescently tagged to function as reporters to identify and eliminate tumors in vivo.

Gallium (Ga)-based LM nanoparticles are promising nanoscale materials for biomedical applications due to their physicochemical properties, including flexibility, easy surface modification, efficient photothermal conversion, and high biocompatibility.

Sep 19, 2023

Stanford Medicine researchers find possible cause of depression after stroke

Posted by in categories: biotech/medical, chemistry, neuroscience

Scientists discover a biomarker in stroke survivors, suggesting that chemical changes after stroke can lead to depression. The findings may pave the way toward treatment.

Sep 19, 2023

Quantum computing offers new insight into photochemical processes

Posted by in categories: chemistry, computing, environmental, quantum physics

Quantum computing has provided new insights into a fundamental aspect of photochemical reactions that has previously proven difficult to study. The findings could improve scientists’ understanding of light-driven processes such as photosynthesis, smog formation and ozone destruction.

Photochemical processes occur when atomic nuclei and their electrons take on different configurations after absorbing a photon. Some of these reactions are guided by a quantum phenomenon called a conical intersection, where the potential energy surfaces that describe a molecule in its ground state and in its excited state converge. In these situations, quantum mechanical interference can prevent certain molecular transformations from taking place – a constraint known as a geometric phase. This limits the path that the reaction can take and affects the reaction outcome. The geometric phase has been known about since the 1950s, but due to the femtosecond timescales involved, it has never been directly observed in a molecular system.

Sep 18, 2023

A modern digital light processing technology to 3D print microfluidic chips

Posted by in categories: 3D printing, bioengineering, biotech/medical, chemistry, computing

Conventional manufacturing methods such as soft lithography and hot embossing processes can be used to bioengineer microfluidic chips, albeit with limitations, including difficulty in preparing multilayered structures, cost-and labor-consuming fabrication processes as well as low productivity.

Materials scientists have introduced digital light processing as a cost-effective microfabrication approach to 3D print microfluidic chips, although the fabrication resolution of these microchannels are limited to a scale of sub-100 microns.

In a new report published in Microsystems and Nanoengineering, Zhuming Luo and a scientific team in , and chemical engineering in China developed an innovative digital light processing method.

Sep 17, 2023

New nanotech weapon takes aim at hard-to-treat breast cancer

Posted by in categories: biotech/medical, chemistry, engineering, nanotechnology

Breast cancer in its various forms affects more than 250,000 Americans a year. One particularly aggressive and hard-to-treat type is triple-negative breast cancer (TNBC), which lacks specific receptors targeted by existing treatments. The rapid growth and metastasis of this cancer also make it challenging to manage, leading to limited therapy options and an often poor prognosis for patients.

A promising new approach that uses minuscule tubes to deliver cancer-fighting drugs directly to the tumor site while preserving has been developed by Johns Hopkins engineers. The team’s research appeared in Nanoscale.

“In this paper, we showed that we can use to specifically target both proliferating and senescent TNBC cells with chemotherapeutics and senolytics, killing them without targeting healthy breast cells,” said Efie Kokkoli, professor of chemical and biomolecular engineering, a core researcher at the Johns Hopkins Institute for NanoBioTechnology, and a specialist in engineering targeted nanoparticles for the delivery of cancer therapeutics.

Sep 16, 2023

A newly created artificial photosynthesis system is 10 times more effective than existing systems

Posted by in categories: chemistry, solar power, sustainability

Peter Allen.

Published in Nature Catalysis, the six chemists discovered a method that could be used to produce other chemicals.

Sep 16, 2023

Biological Masterpiece — Evolution Wired Human Brains To Act Like Supercomputers

Posted by in categories: biotech/medical, chemistry, evolution, neuroscience, supercomputing

Researchers have confirmed that human brains are naturally wired to perform advanced calculations, similar to e a high-powered computer, to make sense of the world through a process known as Bayesian inference.

In a recent study published in Nature Communications.

<em>Nature Communications</em> is a peer-reviewed, open-access, multidisciplinary, scientific journal published by Nature Portfolio. It covers the natural sciences, including physics, biology, chemistry, medicine, and earth sciences. It began publishing in 2010 and has editorial offices in London, Berlin, New York City, and Shanghai.

Sep 15, 2023

Drones lead the way in real-time air quality checks

Posted by in categories: chemistry, drones, sustainability

Revolutionary ‘Lab-on-a-drone’ system detects airborne pollutants in real time.

In a significant stride towards better understanding and combating air pollution, researchers have unveiled an innovative “lab-on-a-drone” system. Published in the American Chemical Society’s journal, Analytical Chemistry.


Credit: Naypong/iStock.

Continue reading “Drones lead the way in real-time air quality checks” »

Sep 15, 2023

Liquid Computer Made From DNA Comprises Billions of Circuits

Posted by in categories: biotech/medical, chemistry, computing, information science

For eons, deoxyribonucleic acid (DNA) has served as a sort of instruction manual for life, providing not just templates for a vast array of chemical structures but a means of managing their production.

In recent years engineers have explored a subtly new role for the molecule’s unique capabilities, as the basis for a biological computer. Yet in spite of the passing of 30 years since the first prototype, most DNA computers have struggled to process more than a few tailored algorithms.

A team researchers from China has now come up with a DNA integrated circuit (DIC) that’s far more general purpose. Their liquid computer’s gates can form an astonishing 100 billion circuits, showing its versatility with each capable of running its own program.

Page 92 of 337First8990919293949596Last