Menu

Blog

Archive for the ‘chemistry’ category: Page 38

Feb 5, 2024

Evolution and state of the art of launch systems

Posted by in categories: business, chemistry, robotics/AI, space travel

In the XXI century, the world of orbital launchers has started a revolution, a fundamental change of paradigm: the replacement of expendable rockets with reusable ones is well underway. This presentation summarizes the situation at the beginning of year 2024.

A short bio.
Alberto Cavallo is an Electrical Engineer, graduated at the Politecnico di Torino in 1985. He began his activity with designing electric systems in Fiat Engineering, the engineering and construction company of the FIAT Group, moving soon to control and automation systems in the same company. He was involved in all business areas of the company, which included revamping and new projects of car factories for the FIAT Group as well as large infrastructures, power and cogeneration plants for external clients. Among the projects of that time were the new FIAT factories in Melfi and Pratola Serra, the high speed railways Torino-Milano and Bologna-Firenze, the district heating system of Torino Sud, combined cycle power plants for several hundred megawatts in Italy and in Brazil. Since Fiat Engineering was transferred from the FIAT Group to a new EPC group and then merged with a large EPC company in Milan, he has been involved in large oil and gas and petrochemical projects all over the world. Besides his professional activity, he has always taken part in several cultural activities. He was a member of the Associations of Alumni of the Liceo Classico Vittorio Alfieri of Turin, active in promoting humanistic culture as well as its connection to the technical and scientific area. He manages his own website www.eurinome.it (in Italian only) about philosophy, science and politics/geopolitics. Due to this he got in contact with Adriano Autino and his TDF, then becoming one of the founding members of Space Renaissance International. Besides several papers in his professional area he has written several articles for his own site, for TDF and SRI, coauthoring the book “Three Theses for the Space Renaissance” with Adriano Autino and Patrick Q. Collins. He is currently member of the Board of SRI.

Feb 2, 2024

In the AI science boom, beware: your results are only as good as your data

Posted by in categories: biotech/medical, chemistry, robotics/AI, science

We are in the middle of a data-driven science boom. Huge, complex data sets, often with large numbers of individually measured and annotated ‘features’, are fodder for voracious artificial intelligence (AI) and machine-learning systems, with details of new applications being published almost daily.

But publication in itself is not synonymous with factuality. Just because a paper, method or data set is published does not mean that it is correct and free from mistakes. Without checking for accuracy and validity before using these resources, scientists will surely encounter errors. In fact, they already have.

In the past few months, members of our bioinformatics and systems-biology laboratory have reviewed state-of-the-art machine-learning methods for predicting the metabolic pathways that metabolites belong to, on the basis of the molecules’ chemical structures1. We wanted to find, implement and potentially improve the best methods for identifying how metabolic pathways are perturbed under different conditions: for instance, in diseased versus normal tissues.

Feb 2, 2024

New Superconducting Material discovered in Transition-Metal Dichalcogenides Materials

Posted by in categories: chemistry, energy

With the support of electrical transport and magnetic measurement systems of Steady High Magnetic Field Facility (SHMFF), a research team from Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences (CAS), discovered a new superconducting material called (InSe2)xNbSe2, which possesses a unique lattice structure. The superconducting transition temperature of this material reaches 11.6 K, making it the transition metal sulfide superconductor with the highest transition temperature under ambient pressure.

The results were published in Journal of the American Chemical Society.

TMD materials have received lots of attention due to their numerous applications in the fields of catalysis, energy storage, and integrated circuits. However, the relatively low superconducting transition temperatures of TMD superconductors have limited their potential use.

Feb 1, 2024

Scientists develop 3D-printed pneumatic modules that control the movements of soft robots using air pressure

Posted by in categories: chemistry, robotics/AI

In the future, soft robots will be able to perform tasks that cannot be done by conventional robots. These soft robots could be used in terrain that is difficult to access and in environments where they are exposed to chemicals or radiation that would harm electronically controlled robots made of metal. This requires such soft robots to be controllable without any electronics, which is still a challenge in development.

A research team at the University of Freiburg has now developed 3D-printed pneumatic logic modules that control the movements of soft robots using air pressure alone. These modules enable logical switching of the air flow and can thus imitate electrical control.

The modules make it possible for the first time to produce flexible and electronics-free soft robots entirely in a 3D printer using conventional filament printing material.

Feb 1, 2024

Researchers pioneer electronics-free circuit to propel soft robot evolution

Posted by in categories: chemistry, robotics/AI, transportation

Researchers have developed an ingenious air-powered soft valve circuit system devoid of electronics, showcasing its utility in a drink dispenser and its durability as a car drives over it.

The 3D-printed valve system showcases how well soft devices without electronics can work, even when facing challenges that could turn off regular robots.

According to reseachers at the University of Freiburg, its integration into everyday applications heralds a new era in robust and adaptable robotics. Soft circuit devices, which are flexible and don’t use metal, can handle damage much better than those with delicate electronics. They can survive being crushed or exposed to harsh chemicals without breaking.

Jan 31, 2024

Mental Health Statistics And Facts In 2024

Posted by in categories: chemistry, computing, neuroscience

I believe that the nanotransfection using internal biocomputing will change psychiatric problems because it will physically repair problems with biocomputing rather chemical based computers. Also this could heal the software components aswell of the mind aswell.


Millions of Americans experience symptoms of a mental health condition each year, and the number of people seeking care is trending upward. While a mental health diagnosis may impact an individual’s daily life, it can also have a ripple effect across families, communities and even economies.

Here’s a closer look at the current state of mental health, including how many people experience mental health conditions and which populations are most at risk.

Jan 30, 2024

Scientists manufacture a surface that has virucidal properties but does not use any chemicals

Posted by in categories: biological, chemistry

A team of researchers from the URV and the RMIT University (Australia) has designed and manufactured a surface that uses mechanical means to mitigate the infectious potential of viruses. Made of silicon, the artificial surface consists of a series of tiny spikes that damage the structure of viruses when they come into contact with it. The work is published in the journal ACS Nano.

The research has revealed how these processes work and that they are 96% effective. Using this technology in environments in which there is potentially dangerous biological material would make laboratories easier to control and safer for the professionals who work there.

Spike the viruses to kill them. This seemingly unsophisticated concept requires considerable technical expertise and has one great advantage: a high virucidal potential that does not require the use of chemicals. The process of making the virucidal surfaces starts with a smooth metal plate, which is bombarded with ions to strategically remove material.

Jan 30, 2024

Enzyme for biocatalysis uses solvent as a substrate

Posted by in categories: biotech/medical, chemistry

A large number of applications in the chemical industry rely on the molecules NADH or NADPH as fuel. A team led by Professor Dirk Tischler, head of the Microbial Biotechnology working group at Ruhr University Bochum, used a biocatalyst to study their production in detail.

The researchers proved that, in addition to formate, the biocatalyst formate dehydrogenase can also convert formamides. This means, for one thing, that the enzyme can also cleave the difficult-to-break C–N bond. For another, formamides are a common solvent.

“This opens up completely new possibilities for poorly soluble NADH reactions as well as NADPH-dependent reactions,” says Tischler.

Jan 30, 2024

Acoustic tweezers manipulate cells with sound waves

Posted by in categories: 3D printing, bioengineering, biotech/medical, chemistry, life extension, neuroscience

Engineers at MIT, Penn State University, and Carnegie Mellon University have devised a way to manipulate cells in three dimensions using sound waves. These “acoustic tweezers” could make possible 3D printing of cell structures for tissue engineering and other applications, the researchers say.

Designing tissue implants that can be used to treat human disease requires precisely recreating the natural tissue architecture, but so far it has proven difficult to develop a single method that can achieve that while keeping cells viable and functional.

“The results presented in this paper provide a unique pathway to manipulate biological cells accurately and in three dimensions, without the need for any invasive contact, tagging, or biochemical labeling,” says Subra Suresh, president of Carnegie Mellon and former dean of engineering at MIT. “This approach could lead to new possibilities for research and applications in such areas as regenerative medicine, neuroscience, tissue engineering, biomanufacturing, and cancer metastasis.”

Jan 30, 2024

Elon Musk’s Neuralink implants brain chip in first human

Posted by in categories: biotech/medical, chemistry, computing, Elon Musk, neuroscience

Jan 29 (Reuters) — The first human patient has received an implant from brain-chip startup Neuralink on Sunday and is recovering well, the company’s billionaire founder Elon Musk said.

“Initial results show promising neuron spike detection,” Musk said in a post on the social media platform X on Monday.

Spikes are activity by neurons, which the National Institute of Health describes as cells that use electrical and chemical signals to send information around the brain and to the body.

Page 38 of 318First3536373839404142Last