Toggle light / dark theme

For years, researchers have aimed to learn more about a group of metal oxides that show promise as key materials for the next generation of lithium-ion batteries because of their mysterious ability to store significantly more energy than should be possible. An international research team, co-led by The University of Texas at Austin, has cracked the code of this scientific anomaly, knocking down a barrier to building ultra-fast battery energy storage systems.

The team found that these possess unique ways to store energy beyond classic electrochemical mechanisms. The research, published in Nature Materials, found several types of compounds with up to three times the energy storage capability compared with materials common in today’s commercially available lithium-ion batteries.

By decoding this mystery, the researchers are helping unlock batteries with greater energy capacity. That could mean smaller, more powerful batteries able to rapidly deliver charges for everything from smartphones to electric vehicles.

The moon is turning ever so slightly red, and it’s likely Earth’s fault. Our planet’s atmosphere may be causing the moon to rust, new research finds.

Rust, also known as an iron oxide, is a reddish compound that forms when iron is exposed to water and oxygen. Rust is the result of a common chemical reaction for nails, gates, the Grand Canyon’s red rocks — and even Mars. The Red Planet is nicknamed after its reddish hue that comes from the rust it acquired long ago when iron on its surface combined with oxygen and water, according to a statement from NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California.

Cellular Aquaculture — Feed The World and Save the Oceans — Lou Cooperhouse, President & CEO, of BlueNalu, joins me on ideaXme (https://radioideaxme.com/) to discuss his company’s technologies to provide the world with healthy and safe cell-based seafood products, and support the sustainability and diversity of our oceans — #Ideaxme #StemCells #Aquaculture #Oceans #Fish #Sushi #Poke #Ceviche #SustainableDevelopment #Agriculture #Health #Wellness #RegenerativeMedicine #Biotech #Longevity #Aging #IraPastor #Bioquark #Regenerage ideaXme BlueNalu Rutgers University Rich Products Sumitomo Chemical: Group Companies of the Americas KBW Investments.


Ira Pastor, ideaXme life sciences ambassador and founder of Bioquark, interviews Lou Cooperhouse, President and CEO of BlueNalu.

Ira Pastor comments:

Global demand for seafood is at an all time high, as consumers are increasingly choosing to eat an extraordinary variety of seafood products that exist worldwide. Unfortunately, our global supply for seafood cannot keep pace with this demand, as populations of marine species have halved since 1970. This is due to overfishing, illegal fishing, rising ocean temperatures, acidification, the effects of trawling, and a number of other environmental, social, and political challenges.

At the same time, consumers are looking for more from their food choices. Consumers are increasingly concerned about animal welfare and the conditions in which fish are farmed and caught. In addition, they are increasingly concerned about their own personal welfare, as seafood can be a source of mercury, toxins and poisons, pathogens, viruses, and parasites, micro-particles of plastics due to plastic pollution in our ocean, and a variety of other environmental pollutants.

Cardiovascular-related disorders are a significant worldwide health problem. Cardiovascular disease (CVD) is the leading cause of death in developed countries, making up a third of the mortality rate in the US1. Congenital heart defects (CHD) affect ∼1% of all live births2, making it the most common birth defect in humans. Current technologies provide some insight into how these disorders originate but are limited in their ability to provide a complete overview of disease pathogenesis and progression due to their lack of physiological complexity. There is a pressing need to develop more faithful organ-like platforms recapitulating complex in vivo phenotypes to study human development and disease in vitro. Here, we report the most faithful in vitro organoid model of human cardiovascular development to date using human pluripotent stem cells (hPSCs). Our protocol is highly efficient, scalable, shows high reproducibility and is compatible with high-throughput approaches. Furthermore, our hPSC-based heart organoids (hHOs) showed very high similarity to human fetal hearts, both morphologically and in cell-type complexity. hHOs were differentiated using a two-step manipulation of Wnt signaling using chemical inhibitors and growth factors in completely defined media and culture conditions. Organoids were successfully derived from multiple independent hPSCs lines with very similar efficiency. hHOs started beating at ∼6 days, were mostly spherical and grew up to ∼1 mm in diameter by day 15 of differentiation. hHOs developed sophisticated, interconnected internal chambers and confocal analysis for cardiac markers revealed the presence of all major cardiac lineages, including cardiomyocytes (TNNT2+), epicardial cells (WT1+, TJP+), cardiac fibroblasts (THY1+, VIM+), endothelial cells (PECAM1+), and endocardial cells (NFATC1+). Morphologically, hHOs developed well-defined epicardial and adjacent myocardial regions and presented a distinct vascular plexus as well as endocardial-lined microchambers. RNA-seq time-course analysis of hHOs, monolayer differentiated iPSCs and fetal human hearts revealed that hHOs recapitulate human fetal heart tissue development better than previously described differentiation protocols3,4. hHOs allow higher-order interaction of distinct heart tissues for the first time and display biologically relevant physical and topographical 3D cues that closely resemble the human fetal heart. Our model constitutes a powerful novel tool for discovery and translational studies in human cardiac development and disease.

The authors have declared no competing interest.

For the past 70 years, most of humanity’s rockets have been chemical rockets- with either liquid or solid fuel. However, it may be possible for future rockets to use different fuel sources.

Discord Link: https://discord.gg/brYJDEr
Patreon link: https://www.patreon.com/TheFuturistTom
Please follow our instagram at: https://www.instagram.com/the_futurist_tom
For business inquires, please contact [email protected]

Circa 2017


Imagine materials strong enough to use in building airplanes or motor cars, yet are literally lighter than air. Soon, that may not be so hard to do because a team of researchers from MIT and Lawrence Livermore National Laboratory (LLNL) have developed new ultra-lightweight materials that are as light as aerogel, but 10,000 times stiffer, and may one day revolutionize aerospace and automotive designs.

Aerogels are incredibly light, so light that the record holder, aerographene, boasts a density of just 0.16 mg/cm3. Currently, aerogels are used for insulation, tennis racquets, as a means of controlling oil spills, and were used on the NASA Stardust mission to collect samples from a comet’s tail. Unfortunately, despite its seemingly ephemeral nature, its very much a solid and will shatter if pressed hard enough, so its use is limited.

The new materials developed by the MIT/LLNL team aren’t aerogels, but are metamaterials. That is, artificial materials with properties that aren’t found in nature. The idea is to structure it, so that it has the lightness of aerogel, but is much stronger. The strength of the new materials comes from their geometric structure, not their chemical composition.

With moral purity inserted as a component to the internal processes for all academic publications, it will henceforth become impossible to pursue the vital schema of conjecture and refutation.


Shocked that one of their own could express a heterodox opinion on the value of de rigueur equity, diversity and inclusion policies, chemistry professors around the world immediately demanded the paper be retracted. Mob justice was swift. In an open letter to “our community” days after publication, the publisher of Angewandte Chemie announced it had suspended the two senior editors who handled the article, and permanently removed from its list of experts the two peer reviewers involved. The article was also expunged from its website. The publisher then pledged to assemble a “diverse group of external advisers” to thoroughly root out “the potential for discrimination and foster diversity at all levels” of the journal.

Not to be outdone, Brock’s provost also disowned Hudlicky in a press statement, calling his views “utterly at odds with the values” of the university; the school then drew attention to its own efforts to purge unconscious bias from its ranks and to further the goals of “accessibility, reconciliation and decolonization.” (None of which have anything to do with synthetic organic chemistry, by the way.) Brock’s knee-jerk criticism of Hudlicky is now also under review, following a formal complaint by another professor that the provost’s statement violates the school’s commitment to freedom of expression.

Hudlicky — who told Retraction Watch “the witch hunt is on” — clearly had the misfortune to make a few cranky comments at a time when putting heads on pikes is all the rage. But what of the implications his situation entails for the entirety of the peer-review process? Given the scorched earth treatment handed out to the editors and peer reviewers involved at Angewandte Chemie, the new marching orders for academic journals seem perfectly clear — peer reviewers are now expected to vet articles not just for coherence and relevance to the scientific field in question, but also for alignment with whatever political views may currently hold sway with the community-at-large. If a publication-worthy paper comes across your desk that questions or undermines orthodox public opinion in any way — even in a footnote — and you approve it, your job may be forfeit. Conform or disappear.