Menu

Blog

Archive for the ‘chemistry’ category: Page 280

Dec 13, 2019

Nanoscience breakthrough: Probing particles smaller than a billionth of a meter

Posted by in categories: bioengineering, biotech/medical, chemistry, nanotechnology

Scientists at Tokyo Institute of Technology (Tokyo Tech) have developed a new methodology that allows researchers to assess the chemical composition and structure of metallic particles with a diameter of only 0.5 to 2 nm. This breakthrough in analytical techniques will enable the development and application of minuscule materials in the fields of electronics, biomedicine, chemistry, and more.

The study and development of novel materials have enabled countless technological breakthroughs and are essential across most fields of science, from medicine and bioengineering to cutting-edge electronics. The rational design and analysis of innovative materials at nanoscopic scales allows us to push through the limits of previous devices and methodologies to reach unprecedented levels of efficiency and new capabilities. Such is the case for metal nanoparticles, which are currently in the spotlight of modern research because of their myriad potential applications. A recently developed synthesis method using dendrimer molecules as a template allows researchers to create metallic nanocrystals with diameters of 0.5 to 2 nm (billionths of a meter).

Dec 12, 2019

Google has performed the biggest quantum chemistry simulation ever

Posted by in categories: chemistry, computing, quantum physics

Google’s Sycamore quantum computer, which recently demonstrated its dominance over ordinary computers, is now breaking records in quantum chemistry.

Dec 11, 2019

Astrobiology And The Search For Extraterrestrial Like Life

Posted by in categories: alien life, chemistry, evolution, health

Ira Pastor, ideaXme exponential health ambassador, interviews Dr. Penelope “Penny” Boston, recent Director of NASA’s Astrobiology Institute.

Astrobiology is an interdisciplinary scientific field concerned with the origins, early evolution, distribution, and future of life in the universe, and considers the big question of whether extraterrestrial life exists, and if it does, how humans can detect it.

Continue reading “Astrobiology And The Search For Extraterrestrial Like Life” »

Dec 10, 2019

Scientists Create a New Kind of Artificial Flesh That Heals Itself Like The Real Thing

Posted by in categories: chemistry, materials

Artificial flesh is growing ever closer to the real thing. Scientists in Australia have now created a new jelly-like material which they claim has the strength and durability of actual skin, ligaments, or even bone.

“With the special chemistry we’ve engineered in the hydrogel, it can repair itself after it has been broken like human skin can,” explains chemist Luke Connal from the Australian National University.

“Hydrogels are usually weak, but our material is so strong it could easily lift very heavy objects and can change its shape like human muscles do.”

Dec 10, 2019

AstroBiology and the Search for ExtraTerrestrial-Like Life!! — ideaXme — Dr. Penelope “Penny” Boston, PhD., Director of NASA’s Astrobiology Institute — Ira Pastor

Posted by in categories: alien life, astronomy, bioengineering, chemistry, DNA, Elon Musk, evolution, futurism, government, Mark Zuckerberg

Dec 2, 2019

New algorithms to determine eigenstates and thermal states on quantum computers

Posted by in categories: chemistry, computing, information science, particle physics, quantum physics

Determining the quantum mechanical behavior of many interacting particles is essential to solving important problems in a variety of scientific fields, including physics, chemistry and mathematics. For instance, in order to describe the electronic structure of materials and molecules, researchers first need to find the ground, excited and thermal states of the Born-Oppenheimer Hamiltonian approximation. In quantum chemistry, the Born-Oppenheimer approximation is the assumption that electronic and nuclear motions in molecules can be separated.

A variety of other scientific problems also require the accurate computation of Hamiltonian ground, excited and thermal states on a quantum computer. An important example are combinatorial optimization problems, which can be reduced to finding the ground state of suitable spin systems.

So far, techniques for computing Hamiltonian eigenstates on quantum computers have been primarily based on phase estimation or variational algorithms, which are designed to approximate the lowest energy eigenstate (i.e., ground state) and a number of excited states. Unfortunately, these techniques can have significant disadvantages, which make them impracticable for solving many scientific problems.

Nov 28, 2019

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

Posted by in categories: biological, chemistry, engineering

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that painstakingly organized chaos, in temperatures millions of times colder than interstellar space, Kang-Kuen Ni achieved a feat of precision. Forcing two ultracold molecules to meet and react, she broke and formed the coldest bonds in the history of molecular couplings.

“Probably in the next couple of years, we are the only lab that can do this,” said Ming-Guang Hu, a postdoctoral scholar in the Ni lab and first author on their paper published today in Science. Five years ago, Ni, the Morris Kahn Associate Professor of Chemistry and Chemical Biology and a pioneer of ultracold chemistry, set out to build a new apparatus that could achieve the lowest temperature of any currently available technology. But they couldn’t be sure their intricate engineering would work.

Now, they not only performed the coldest reaction yet, they discovered their new apparatus can do something even they did not predict. In such intense cold—500 nanokelvin or just a few millionths of a degree above absolute zero—their slowed to such glacial speeds, Ni and her team could see something no one has been able to see before: the moment when two molecules meet to form two new molecules. In essence, they captured a reaction in its most critical and elusive act.

Nov 20, 2019

Rejuvenation: If I could turn back time … — Longevity.Technology

Posted by in categories: biotech/medical, chemistry, existential risks, life extension, neuroscience

Last week, the BBC reported on the plight of axolotls in Mexico City, which are under threat of extinction. [1] The risk to these creatures is made doubly concerning when you consider their incredible ability to regenerate and apparent immunity to cancer, which is of great interest to scientists and companies working in the Longevity sector. One such company is Bioquark, a Philadelphia-based life sciences company that is working on the development of combinatorial biologics for the rejuvenation and repair of human organs and tissues. Among its clinical plans, it lists the development of therapeutic products for cancer reversion, organ repair and regeneration, and even brain death resuscitation. Nothing major then!

Bioquark has developed a novel combinatorial biologic called BQ-A, which mimics the regulatory biochemistry of the living human egg (oocyte) immediately following fertilization. While ooplasm-based reprogramming has been studied in experiments such as in-vitro fertilization and cloning, Bioquark claims it is the first company to apply it to somatic tissue in mammals.

We spoke with Bioquark’s CEO, Ira Pastor, a 30-year veteran of the pharmaceutical industry, to find out more about the company and where it’s headed.

Nov 19, 2019

Tardigrades, Cryptobiosis, and Survival at the Extremes!! — Dr. Thomas Boothby, University of Wyoming — ideaXme — Ira Pastor

Posted by in categories: aging, alien life, bioengineering, biotech/medical, chemistry, cryonics, DNA, futurism, genetics, health

Nov 18, 2019

Scientists discover body’s protection shield

Posted by in categories: biotech/medical, chemistry

Scientists have discovered a way to manipulate the body’s own immune response to boost tissue repair. The findings, published in Current Biology today, reveal a new network of protective factors to shield cells against damage. This discovery, made by University of Bristol researchers, could significantly benefit patients undergoing surgery by speeding recovery times and lowering the risk of complication.

When a is damaged, (either accidentally or through surgery), the body quickly recruits to the injury site where they fight infection by engulfing and killing invading pathogens, through the release of toxic factors (such as unstable molecules containing oxygen known as “reactive oxygen species” e.g. peroxides). However, these bactericidal products are also highly toxic to the host tissue and can disrupt the repair process. To counteract these the repairing tissue activates powerful protective machinery to “shield” itself from the damage.

Now, researchers from Bristol’s School of Biochemistry studying , have mapped the exact identities of these protective pathways and identified how to stimulate this process in naïve tissues.