Toggle light / dark theme

Split gene-editing tool offers greater precision

To make a gene-editing tool more precise and easier to control, Rice University engineers split it into two pieces that only come back together when a third small molecule is added.

Researchers in the lab of chemical and biomolecular engineer Xue Sherry Gao created a CRISPR-based gene editor designed to target adenine ⎯ one of the four main DNA building blocks ⎯ that remains inactive when disassembled but kicks into gear once the binding molecule is added.

Compared to the intact original, the split editor is more precise and stays active for a narrower window of time, which is important for avoiding off-target edits. Moreover, the activating small molecule used to bind the two pieces of the tool together is already being used as an anticancer and immunosuppressive drug.

Dr George Dodge — CEO & Co-Founder — Mechano-Therapeutics — Revolutionizing Musculoskeletal Health

Revolutionizing Musculoskeletal Health Through Microcapsule Drug Delivery — Dr. @George R. Dodge, Ph.D. — CEO & Co-Founder — Mechano-Therapeutics LLC


Dr. George R. Dodge, Ph.D. is CEO & Co-Founder of Mechano-Therapeutics LLC (https://mechano-therapeutics.com/), a biotechnology company spun out from his lab, and the labs of his partners Dr. Rob Mauck and Dr. Daeyeon Lee, at the University of Pennsylvania, specializing in microcapsule development using proprietary microfluidics for drug encapsulation, with a mission to revolutionize musculoskeletal health using an innovative platform technology to enhance delivery of therapeutics for improving patient outcomes.

Dr. Dodge recently served on the faculty of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania; as Director, Philadelphia VA Shared Instrument Core; and Director, Translational Musculoskeletal Research Center, Philadelphia Crescenz Veterans Administration Medical Center, Department of Veteran Affairs.

Dr. Dodge has a B.S. (Biology) from Asbury College, a B.S. (Biology and Health Science / Public Health) from State University of New York, a Ph.D. (Biochemistry and Immunology) from McGill University, and did Post-Graduate work in Molecular and Cell Biology, at Thomas Jefferson University Department of Pathology and Cell Biology.

Dr. Dodge is an established investigator with a career long commitment to translational musculoskeletal research and in particular research focused on cartilage and chondrocyte biology, extracellular matrix and research related to osteoarthritis.

Unlocking Battery Mysteries: X-Ray “Computer Vision” Reveals Unprecedented Physical and Chemical Details

It lets researchers extract pixel-by-pixel information from nanoscale.

The nanoscale refers to a length scale that is extremely small, typically on the order of nanometers (nm), which is one billionth of a meter. At this scale, materials and systems exhibit unique properties and behaviors that are different from those observed at larger length scales. The prefix “nano-” is derived from the Greek word “nanos,” which means “dwarf” or “very small.” Nanoscale phenomena are relevant to many fields, including materials science, chemistry, biology, and physics.

Unique New Material Could Generate More Computing Power and Memory Storage While Using Significantly Less Energy

For the first time, a team from the University of Minnesota Twin Cities has synthesized a thin film of a unique topological semimetal material that has the potential to generate more computing power and memory storage while using significantly less energy. Additionally, the team’s close examination of the material yielded crucial insights into the physics behind its unique properties.

The study was recently published in the journal Nature Communications.

<em>Nature Communications</em> is a peer-reviewed, open-access, multidisciplinary, scientific journal published by Nature Portfolio. It covers the natural sciences, including physics, biology, chemistry, medicine, and earth sciences. It began publishing in 2010 and has editorial offices in London, Berlin, New York City, and Shanghai.

Brazilian researchers develop method of purifying water contaminated by glyphosate

Researchers at São Paulo State University (UNESP) in Brazil have developed a strategy for removing glyphosate, one of the world’s most frequently used herbicides, from water. Inspired by the concept of the circular economy, the technique is based on sugarcane bagasse, a waste material produced by sugar and ethanol plants.

“Isolated and chemically functionalized sugarcane bagasse fibers can be used as adsorbent material. Glyphosate adheres to its surface and is removed as a water contaminant by filtration, decantation or centrifugation,” Maria Vitória Guimarães Leal, told Agência FAPESP.

She is the first author of an article on the research published in the journal Pure and Applied Chemistry. Adsorption is a process whereby molecules dispersed in a liquid or gaseous medium adhere to a solid insoluble surface, which is typically porous.

SLAC fires up the world’s most powerful X-ray laser: LCLS-II ushers in a new era of science

The newly upgraded Linac Coherent Light Source (LCLS) X-ray free-electron laser (XFEL) at the Department of Energy’s SLAC National Accelerator Laboratory successfully produced its first X-rays, and researchers around the world are already lined up to kick off an ambitious science program.

The upgrade, called LCLS-II, creates unparalleled capabilities that will usher in a new era in research with X-rays.

Scientists will be able to examine the details of quantum materials with unprecedented resolution to drive new forms of computing and communications; reveal unpredictable and fleeting chemical events to teach us how to create more sustainable industries and ; study how carry out life’s functions to develop new types of pharmaceuticals; and study the world on the fastest timescales to open up entirely new fields of scientific investigation.

Violating the Universal Kasha’s Rule — Scientists Uncover Secrets of a Mysterious Blue Molecule

Scientists from IOCB Prague are the first to describe the causes of the behavior of one of the fundamental aromatic molecules, azulene. This molecule has captivated the scientific community not just with its distinct blue hue, but also with its unique properties.

Their current undertaking will influence the foundations of organic chemistry in the years to come and in practice will help harness the maximum potential of captured light energy. Their findings were recently published in the Journal of the American Chemical Society (JACS).

Azulene has piqued the curiosity of chemists for many years. The question of why it is blue, despite there being no obvious reason for this, was answered almost fifty years ago by a scientist of global importance, who, coincidentally, had close ties with IOCB Prague, Prof. Josef Michl.

Scientists Discover That the Genes for Learning and Memory Are 650 Million Years Old

A team of scientists led by researchers from the University of Leicester has determined that genes responsible for learning, memory, aggression, and other complex behaviors emerged approximately 650 million years ago.

The research spearheaded by Dr. Roberto Feuda, of the Neurogenetic group within the Department of Genetics and Genome Biology, in collaboration with colleagues from the University of Leicester and the University of Fribourg (Switzerland), has recently been published in the journal Nature Communications.

<em>Nature Communications</em> is a peer-reviewed, open-access, multidisciplinary, scientific journal published by Nature Portfolio. It covers the natural sciences, including physics, biology, chemistry, medicine, and earth sciences. It began publishing in 2010 and has editorial offices in London, Berlin, New York City, and Shanghai.

/* */