Menu

Blog

Archive for the ‘chemistry’ category: Page 121

Nov 22, 2022

How did life begin? Abiogenesis. Origin of life from nonliving matter

Posted by in categories: biotech/medical, chemistry, evolution, genetics

Sponsored by Kishore Tipirneni’s new book “A New Eden” available here: https://getbook.at/NewEden | Abiogenesis – origin of life. Living matter from non-living matter. The origin of living organisms from inorganic or non-living material is called abiogenesis. But abiogenesis is not evolution.

Despite the incredible variations of life we see today, at the fundamental level, all living things contain three elements: Nucleic acids, Proteins, and lipids. These three things had to have been present in order for life to start.

Continue reading “How did life begin? Abiogenesis. Origin of life from nonliving matter” »

Nov 22, 2022

Lethal cancer cells buddy up to survive

Posted by in categories: biotech/medical, chemistry

Tumor cells in the most common pancreatic cancer share nutrients to live and grow. A new discovery by University of California, Irvine biologists and collaborators during a four-year investigation could help lead to better treatments for pancreatic ductal adenocarcinoma, which accounts for over 90 percent of pancreatic cancer cases. The scientists’ paper appears in Nature Cancer. While pancreatic cancer is relatively rare, it is among the leading causes of cancer death in the United States.

One obstacle in treating , known as PDA, is that it generally does not show early symptoms. Another hurdle is the complexity of its dense and fibrous tumors. Consequently, they do not have fully functioning in the tumor. On one front, this makes it difficult to deliver effective chemotherapy. However, it also means the tumors have developed a different kind of metabolism.

“Without blood vessels, PDA cells aren’t getting the normal nutrients they need, so they have come up with other ways to nourish themselves and grow,” said Christopher Halbrook, assistant professor of molecular biology & biochemistry, and lead and co-corresponding author. Understanding this process is essential for devising treatments targeting the cancer’s metabolism.

Nov 22, 2022

Novel nanowire fabrication technique paves way for next generation spintronics

Posted by in categories: chemistry, computing, nanotechnology, particle physics

9 nov 2022.


The challenge of fabricating nanowires directly on silicon substrates for the creation of the next generation of electronics has finally been solved by researchers from Tokyo Tech. Next-generation spintronics will lead to better memory storage mechanisms in computers, making them faster and more efficient.

As our world modernizes faster than ever before, there is an ever-growing need for better and faster electronics and computers. Spintronics is a new system which uses the spin of an electron, in addition to the charge state, to encode data, making the entire system faster and more efficient. Ferromagnetic nanowires with high coercivity (resistance to changes in magnetization) are required to realize the potential of spintronics. Especially L 10-ordered (a type of crystal structure) cobalt-platinum (CoPt) nanowires.

Conventional fabrication processes for L 10-ordered nanowires involve heat treatment to improve the physical and chemical properties of the material, a process called annealing on the crystal substrate; the transfer of a pattern onto the substrate through lithography; and finally the chemical removal of layers through a process called etching. Eliminating the etching process by directly fabricating nanowires onto the silicon substrate would lead to a marked improvement in the fabrication of spintronic devices. However, when directly fabricated nanowires are subjected to annealing, they tend to transform into droplets as a result of the internal stresses in the wire.

Nov 21, 2022

Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation†

Posted by in categories: bioengineering, chemistry, neuroscience

b Department of Polymer Science and Engineering and Key Laboratory of High Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210,023, China.

c Institute of Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland.

Received 21st February 2019, Accepted 17th April 2019.

Nov 21, 2022

Nanorobots clean up contaminated water

Posted by in categories: chemistry, particle physics, robotics/AI, sustainability

Chemists have created nanorobots propelled by magnets that remove pollutants from water. The invention could be scaled up to provide a sustainable and affordable way of cleaning up contaminated water in treatment plants.

Martin Pumera at the University of Chemistry and Technology, Prague, in the Czech Republic and his colleagues developed the nanorobots by using a temperature-sensitive polymer material and iron oxide. The polymer acts like tiny hands that can pick up and dispose of pollutants in the water, while the iron oxide makes the nanorobots magnetic. The researchers also added oxygen and hydrogen atoms to the iron oxide that can attach onto target pollutants.

The robots are about 200 nanometres wide and are powered by magnetic fields, which allow the team to control their movements.

Nov 21, 2022

Graphene-based encapsulation of liquid metal particles†

Posted by in categories: biotech/medical, chemistry

Circa 2020 face_with_colon_three


Liquid metals are a promising functional material due to their unique combination of metallic properties and fluidity at room temperature. They are of interest in wide-ranging fields including stretchable and flexible electronics, reconfigurable devices, microfluidics, biomedicine, material synthesis, and catalysis. Transformation of bulk liquid metal into particles has enabled further advances by allowing access to a broader palette of fabrication techniques for device manufacture or by increasing area available for surface-based applications. For gallium-based liquid metal alloys, particle stabilization is typically achieved by the oxide that forms spontaneously on the surface, even when only trace amounts of oxygen are present. The utility of the particles formed is governed by the chemical, electrical, and mechanical properties of this oxide. To overcome some of the intrinsic limitations of the native oxide, it is demonstrated here for the first time that 2D graphene-based materials can encapsulate liquid metal particles during fabrication and imbue them with previously unattainable properties. This outer encapsulation layer is used to physically stabilize particles in a broad range of pH environments, modify the particles’ mechanical behavior, and control the electrical behavior of resulting films. This demonstration of graphene-based encapsulation of liquid metal particles represents a first foray into the creation of a suite of hybridized 2D material coated liquid metal particles.

Nov 21, 2022

Messenger RNA

Posted by in categories: biological, chemistry

Messenger RNA

#biology #biochemistry #rna

Continue reading “Messenger RNA” »

Nov 21, 2022

Ancestor of all life on Earth evolved earlier than we thought, according to our new timescale

Posted by in categories: alien life, chemistry

Microbial life may have resided within the first four kilometers of Mars’s porous crust.

Four billion years ago, the solar system was still young. Almost fully formed, its planets were starting to experience asteroid strikes a little less frequently. Our own planet could have become habitable as long as 3.9 billion years ago, but its primitive biosphere was much different than it is today. Life had not yet invented photosynthesis, which some 500 million years later would become its main source of energy. The primordial microbes — the common ancestors to all current life forms on Earth — in our planet’s oceans, therefore, had to survive on another source of energy. They consumed chemicals released from inside the planet through its hydrothermal systems and volcanoes, which built up as gas in the atmosphere.

Some of the oldest life forms in our biosphere were microorganisms known as “hydrogenotrophic methanogens” that particularly benefited from the atmospheric composition of the time. Feeding on the CO2 (carbon dioxide) and H2 (dihydrogen) that abounded in the atmosphere (with H2 representing between 0.01 and 0.1% of the atmospheric composition, compared to the current approximate of 0.00005%), they harnessed enough energy to colonize the surface of our planet’s oceans. we explore Mars, it is becoming clearer that similar environmental conditions were developing on its surface at the same time as those that enabled methanogens to flourish in the oceans back on Earth.

Nov 20, 2022

Scientists Claim to Have Discovered the “Secret Ingredient for Building Life”

Posted by in categories: bioengineering, chemistry

A team of researchers from Purdue University claim to have discovered the “chemistry behind the origin of life” on Earth in simple droplets of water, and they’re using strikingly strong language to celebrate the findings.

Graham Cooks, chemistry professor at Purdue and lead author of a new paper published in the journal Proceedings of the National Academy of Sciences, called it a “dramatic discovery” and the “secret ingredient for building life” in a statement.

“This is essentially the chemistry behind the origin of life,” he added. “This is the first demonstration that primordial molecules, simple amino acids, spontaneously form peptides, the building blocks of life, in droplets of pure water.”

Nov 19, 2022

Dead stars covered in space debris could reveal the origins of planets

Posted by in categories: alien life, chemistry

Breadcrumbs…


When University of Cambridge astronomer Amy Bonsor and her colleagues studied the spectrum of light from white dwarfs — the burned-out remains of small stars — they noticed flecks of heavier elements on the stars’ surfaces where there should have been only a glowing expanse of helium and hydrogen. The astronomers realized the stars’ surfaces were littered with debris from asteroids and comets that had fallen into the stars, visible on the surface just briefly before sinking into the depths.

The chemical makeup of those planet crumbs — visible in their spectra, the specific wavelengths of light each chemical emits — suggests that the building blocks of planets are as ancient as a star system itself, rather than things that form later from the disk of material orbiting the star.

Continue reading “Dead stars covered in space debris could reveal the origins of planets” »