Menu

Blog

Archive for the ‘chemistry’ category: Page 119

Feb 16, 2023

Tricorder Tech: Microchip Can Electronically Detect Covid Antibodies In Just A Drop Of Blood

Posted by in categories: biotech/medical, chemistry, computing, mobile phones

A single drop of blood from a finger prick. A simple electronic chip. And a smartphone readout of test results that could diagnose a Covid-19 infections or others like HIV or Lyme disease.

It sounds a bit like science fiction, like the beginnings of the medical tricorder used by doctors on Star Trek. Yet researchers at Georgia Tech and Emory University have taken the first step to showing it can be done, and they’ve published their results in the journal Small.

Postdoctoral fellow Neda Rafat and Assistant Professor Aniruddh Sarkar created a small chip that harnesses the fundamental chemistry of the gold-standard lab method but uses electrical conductivity instead of optics to detect antibodies and indicate infection.

Feb 16, 2023

Tracing The Origin Of life

Posted by in categories: chemistry, space

The origin of life is one of the great questions of mankind. One of the prerequisites for the emergence of life is the abiotic – not by living beings caused chemical – production and polymerization of amino acids, the building blocks of life.

“Two scenarios are being discussed for the emergence of life on Earth: On the one hand, the first-time creation of such amino acid chains on Earth, and on the other hand, the influx from space,” explains Tilmann Märk of the University of Innsbruck. “For the latter, such amino acid chains would have to be generated in the very unfavorable and inhospitable conditions in space.”

A team of researchers led by Michel Farizon of the University of Lyon and Tilmann Märk of the University of Innsbruck has now made a significant discovery in the field of abiotic peptide chain formation from amino acids for the smallest occurring amino acid, glycine, a molecule that has been observed several times extraterrestrially in recent years.

Feb 16, 2023

How Did Life Emerge In Chemically Complex Messy Environments?

Posted by in category: chemistry

One of the problems that make it difficult to solve the mystery of the origin of life is determining how life emerged in chemically complex messy environments on primitive Earth.

Feb 16, 2023

Model Shows How Intelligent-like Behavior Can Emerge From Non-living Agents

Posted by in categories: biotech/medical, chemistry, engineering, mathematics, nanotechnology

It acted with rudimentary intelligence, learning, evolving and communicating with itself to grow more powerful.

A new model by a team of researchers led by Penn State and inspired by Crichton’s novel describes how biological or technical systems form complex structures equipped with signal-processing capabilities that allow the systems to respond to stimulus and perform functional tasks without external guidance.

“Basically, these little nanobots become self-organized and self-aware,” said Igor Aronson, Huck Chair Professor of Biomedical Engineering, Chemistry, and Mathematics at Penn State, explaining the plot of Crichton’s book. The novel inspired Aronson to study the emergence of collective motion among interacting, self-propelled agents. The research was recently published in Nature Communications.

Feb 16, 2023

Fission rocket concept could reach Solar Gravitation Lens in 15 years

Posted by in categories: chemistry, space travel

The concept could one day capture incredibly detailed images of distant alien worlds.

NASA is betting on nuclear propulsion technologies. The space agency’s Institute of Advanced Concepts (NIAC) awarded a grant to a company called Positron Dynamics for the development of a novel type of nuclear fission fragment rocket engine (FFRE).

The lightweight nuclear fission engine concept could outperform traditional chemical rocket engines while also allowing for long-lasting, deep space missions.

Continue reading “Fission rocket concept could reach Solar Gravitation Lens in 15 years” »

Feb 16, 2023

Reconfigurable Antenna Merges Mechanical Engineering and Electromagnetics for Next-Generation Technology

Posted by in categories: biotech/medical, chemistry, engineering, internet

Reconfigurable antennas — those that can tune properties like frequency or radiation beams in real-time, from afar — are integral to future communication network systems, like 6G. But many current reconfigurable antenna designs can fall short: they dysfunction in high or low temperatures, have power limitations, or require regular servicing.

To address these limitations, electrical engineers in the Penn State College of Engineering combined electromagnets with a compliant mechanism, which is the same mechanical engineering concept behind binder clips or a bow and arrow. They published their proof-of-concept reconfigurable compliant mechanism-enabled patch antenna today (February 13, 2023) in the journal Nature Communications.

<em>Nature Communications</em> is a peer-reviewed, open-access, multidisciplinary, scientific journal published by Nature Portfolio. It covers the natural sciences, including physics, biology, chemistry, medicine, and earth sciences. It began publishing in 2010 and has editorial offices in London, Berlin, New York City, and Shanghai.

Feb 16, 2023

Astrophysicists discover the perfect explosion in space

Posted by in categories: chemistry, cosmology, particle physics

When neutron stars collide they produce an explosion that is, contrary to what was believed until recently, shaped like a perfect sphere. Although how this is possible is still a mystery, the discovery may provide a new key to fundamental physics and to measuring the age of the universe. The discovery was made by astrophysicists from the University of Copenhagen and has just been published in the journal Nature.

Kilonovae—the giant explosions that occur when two neutron stars orbit each other and finally collide—are responsible for creating both great and small things in the universe, from to the atoms in the gold ring on your finger and the iodine in our bodies. They give rise to the most extreme physical conditions in the universe, and it is under these extreme conditions that the universe creates the heaviest elements of the periodic table, such as gold, platinum and uranium.

But there is still a great deal we do not know about this violent phenomenon. When a kilonova was detected at 140 million light-years away in 2017, it was the first time scientists could gather detailed data. Scientists around the world are still interpreting the data from this colossal explosion, including Albert Sneppen and Darach Watson from the University of Copenhagen, who made a surprising discovery.

Feb 15, 2023

What Toxic Chemicals Were Aboard the Derailed Train in Ohio?

Posted by in categories: chemistry, government, transportation

The train was carrying industrial materials used in plastics, paint thinners and other products, according to information provided to the federal government.

Feb 15, 2023

‘Magic’ solvent creates stronger thin films

Posted by in categories: chemistry, engineering

A new all-dry polymerization technique uses reactive vapors to create thin films with enhanced properties, such as mechanical strength, kinetics and morphology. The synthesis process is gentler on the environment than traditional high-temperature or solution-based manufacturing and could lead to improved polymer coatings for microelectronics, advanced batteries and therapeutics.

“This scalable technique of initiated chemical vapor deposition polymerization allows us to make new materials, without redesigning or revamping the whole chemistry. We just simply add an ‘active’ solvent,” said Rong Yang, assistant professor in the Smith School of Chemical and Biomolecular Engineering in Cornell Engineering. “It’s a little bit like a Lego. You team up with a new connecting piece. There’s a ton you can build now that you couldn’t do before.”

This micrograph image shows an initiated chemical vapor deposition coating made by doctoral student Pengyu Chen in the lab of Rong Yang, assistant professor in the Smith School of Chemical and Biomolecular Engineering in Cornell Engineering. (Image: Cornell University)

Feb 15, 2023

Lab-Made Enzymes Could Chop Up the Virus That Causes COVID

Posted by in categories: biotech/medical, chemistry

Artificial enzymes can fight the COVID-causing virus by selectively snipping apart its RNA genome, a new study suggests. Researchers say the technique may overcome key problems with previous technologies and could help create rapid antiviral treatments as threats emerge.

When the COVID pandemic struck, University of Cambridge chemical biologist Alexander Taylor scrambled to repurpose a gene-cutting technology he and his colleagues had been developing: synthetic enzymes called XNAzymes (xeno nucleic acids) formed from artificial RNA. Working single-handedly during lockdown, Taylor generated five XNAzymes targeting sequences in SARS-CoV-2’s genome in a matter of days.

Enzymes are natural catalysts that facilitate chemical transformations—in this case, by chopping other molecules apart. But previous DNA-and RNA-based enzymes have struggled to cut long, highly structured molecules such as virus genomes. Instead they destroy targets by recruiting existing enzymes inside cells—a less precise process that can lead to “off-target” cuts and increased side effects.