Toggle light / dark theme

Investigators from the laboratory of Ali Shilatifard, Ph.D., the Robert Francis Furchgott Professor and chair of Biochemistry and Molecular Genetics, have discovered a new repeat gene cluster sequence that is exclusively expressed in humans and non-human primates.

The discovery, detailed in a study published in Science Advances, is a breakthrough for biology and has wide-ranging implications for future research in , , and the study of repetitive DNA sequences, according to the authors.

“This is an unbelievable discovery of the first elongation factor that is repeated within the genome and is very primate-specific,” said Shilatifard, who is also director of the Simpson Querrey Institute for Epigenetics and a professor of Pediatrics.

The groundbreaking gene-editing technology known as Crispr, which acts like a molecular pair of scissors that can be used to cut and modify a DNA sequence, has moved rather quickly from the pages of scientific journals to the medical setting. Earlier this month, about three years after Jennifer Doudna and Emmanuelle Charpentier won the Nobel Prize in Chemistry for describing how bacteria’s immune system could be used as a tool to edit genes, regulators in the U.K. approved the first Crispr-based treatment for sickle cell disease and beta-thalassemia patients. The treatment, from Vertex Pharmaceuticals and Crispr Therapeutics, could be approved by the U.S. Food and Drug Administration early next month for sickle cell patients.

While many obstacles lie ahead for the nascent field, such as how to pay for treatments that typically cost more than $1 million, these regulatory approvals are just the start as newer gene-editing technologies such as base and prime editing make their way through human studies. In an interview, Prof. Doudna says the approval is “a turning point in medicine because it really shows how genome editing can be used as a one-and-done cure for disease.”

Gene editing is part of a broader therapeutic revolution that encompasses genetic and cellular medicine. The pills and injections we are all familiar with generally target proteins or pathways in the body to treat disease. With gene and cell therapy, we can now target the root cause of disease, sometimes curing patients.

Natural products collection reveals novel enzymes with surprising properties. Scientists have discovered two enzymes that enable bacteria to target and break up DNA. This chemical defense likely evolved to help the organism fight off germs. The chemical riches were found within the institute’s one-of-a-kind Natural Products Discovery Center collection.

Slumbering among thousands of bacterial strains in a collection of natural specimens at The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, several fragile vials held something unexpected, and possibly very useful.

Writing in the journal Nature Chemical Biology, a team led by chemist Ben Shen, Ph.D., described discovery of two new enzymes, ones with uniquely useful properties that could help in the fight against human diseases including cancer. The discovery, published last week, offers potentially easier ways to study and manufacture complex natural chemicals, including those that could become medicines.

To identify potential therapeutic targets and preclinical drug candidates for the treatment of ovarian cancer, researchers led by Tan Li from the Shanghai Institute of Organic Chemistry of the Chinese Academy of Sciences have developed novel small molecule inhibitors of CPSF3, a key module of the cleavage and polyadenylation specificity factor (CPSF) complex that catalyzes pre-mRNA splicing and regulates transcription termination.

This work was published in Science Advances on Nov. 22.

Ovarian cancer is the deadliest gynecological cancer and is often diagnosed at a late stage. In treating ovarian cancer, surgery and systemic chemotherapy can modestly improve the survival rate, while targeted therapies with PARP inhibitors are effective in a limited number of ovarian cancer patients.

Cell toxicity and genomic instability are potential side effects from the use of CRISPR-Cas9. The gene editing tool can also cause large rearrangements of DNA through retrotransposition to theoretically trigger tumor development.

While rare, the fact that CRISPR is used to edit millions of cells for some therapies means precautionary steps are warranted given the potential increase in cancer risk. However, retrotransposition is much rarer during base editing, a more precise technique that chemically changes just one “letter” of the genetic code without causing a double-strand break in DNA.

Although MHRA decided that the benefits of Casgevy outweigh its risks, the U.K. regulator granted a one-year conditional marketing authorization of the world-first gene therapy based on the findings of two global clinical trials, noting that no significant safety concerns were identified during the trials.

University of Missouri researchers’ conceptual design of a nanomaterial could potentially pave the way for new uses of nanotechnology in medicine and science.

In a recent study, scientists at the University of Missouri developed a proof of concept for a nanocapsule — a microscopic container — capable of delivering a specific “payload” to a targeted location.

While beyond the scope of this study, the discovery has the potential to revolutionize the delivery of drugs, nutrients, and other chemicals in humans and plants. The power of the forward-thinking idea for this tiny delivery mechanism comes from its inventive structure, said Gary Baker, an associate professor in the Department of Chemistry and study co-author.

Various forms of heat pumps—refrigerators, air conditioners, heaters—are estimated to consume about 30 percent of the world’s electricity. And that number is almost certain to rise, as heat pumps play a very large role in efforts to electrify heating to reduce the use of fossil fuels.

Most existing versions of these systems rely on the compression of a class of chemicals called hydrofluorocarbons, gasses that were chosen because they have a far smaller impact on the ozone layer than earlier refrigerants. Unfortunately, they are also extremely potent greenhouse gasses, with a short-term impact several thousand times that of carbon dioxide.

Alternate technologies have been tested, but all of them have at least one major drawback in comparison to gas compression. In a paper released in today’s issue of Science, however, researchers describe progress on a form of heat pump that is built around a capacitor that changes temperature as it’s charged and discharged. Because the energy spent while charging it can be used on discharge, the system has the potential to be highly efficient.

To enhance their catalytic efficiency in degrading organic pollutants, such as RB and urea, researchers further functionalized the surface of the micromotors with laccase, the bio-catalytic counterpart, for the generation of ammonia from urea. Urea is an emerging contaminant, being a common pollutant from residential activities (urea is the main component of urine) and from different industrial processes.

The chemical component laccase accelerates the conversion of urea into ammonia upon contact with contaminated water. This ammonia can be transformed into hydrogen, which is a clean and sustainable energy source.

“This is an interesting discovery. Today, water treatment plants have trouble breaking down all the urea, which can result in eutrophication when the water is released. This is a serious problem in urban areas in particular,” says Rebeca Ferrer, a PhD student from Dr. Katherine Villa’s group at ICIQ.

“The world isn’t doing terribly well in averting global ecological collapse,” says Dr. Florian Rabitz, a chief researcher at Kaunas University of Technology (KTU), Lithuania, the author of a new monograph, “Transformative Novel Technologies and Global Environmental Governance,” recently published by Cambridge University Press.

Greenhouse gas emissions, species extinction, ecosystem degradation, chemical pollution, and more are threatening the Earth’s future. Despite decades of international agreements and countless high-level summits, success in forestalling this existential crisis has remained elusive, says Dr. Rabitz.

In his new monograph, the KTU researcher delves into the intersection of cutting-edge technological solutions and the global environmental crisis. The author explores how international institutions respond (or fail to respond) to high-impact technologies that have been the subject of extensive debate and controversy.

Pierre Agostini, Ferenc Krausz and Anne L’Huillier share the 2023 Nobel Prize in Physics for experiments that “have given humanity new tools for exploring the world of electrons inside atoms and molecules.” A more succinct description is that they have given us attosecond physics.

Attosecond physics is the science of the exceedingly, extremely, exceptionally [insert your own hyperbolic adverb here] fast. To put it into context, L’Huillier’s first call from the Nobel Prize’s Adam Smith after she received the news took 3 minutes 48 seconds, or-1 attoseconds. Her first heartbeat during that call lasted a second, or a billion billion attoseconds. Almost defying a description, an attosecond is an unfathomably tiny amount of time. But it happens to be the natural timescale of the near-instantaneous dance of electrons.

Being able to gain a glimpse into the incredibly tiny scale of electrons in the incredibly fast attosecond regime opens the door to directly measuring, and perhaps even controlling, quantum processes. And this, in turn, offers huge potential to advance research, not only in quantum physics but also in biology, chemistry, medicine, electronics and many more areas important to science and society.