Toggle light / dark theme

As the hardest tissue in the human body, enamel is not an easy material for engineers to mimic, but doing so could mean big things in materials science and regenerative medicine. Researchers are now reporting a breakthrough in this area, by tweaking the composition of a naturally occurring mineral to emulate the microstructure of natural enamel in a new type of dental coating, and do so in a way that offers even greater strength.

Carried out by scientists in Russia and Egypt, the newly developed dental coating uses hydroxyapatite as a starting point. This compound is the primary component in bone tissue and mineralized tissues in humans and animals.

The researchers doped the hydroxyapatite with a complex of amino acids that naturally aid in the repair of bone and muscle structures, such as lysine and arginine, resulting in a mineralized layer with properties resembling the main component of natural enamel. The material was then applied to healthy teeth, so the team could observe its ability to bind to real dental tissue.

COVID-19 is spreading in China at an alarming rate, infecting a massive number of people and causing numerous suspected deaths that can’t be verified by official sources. What the public can sense is that crematoriums in major cities are overwhelmed.

Have questions? Do you have something to share with us about China? We want to hear from you!
Email: [email protected].
Facebook www.facebook.com/EyesOnChina.

Your support allows us to produce more high-quality videos.
Consider donating at https://www.paypal.com/paypalme/ChinaInsights.

Copyright @ China Insights 2021. Any illegal reproduction of this content in any form will result in immediate action against the person(s) concerned.

The Asgard archaea are thought to be the eukaryotes’ nearest living relatives. In their genomes, numerous eukaryotic signature proteins (ESPs) have sparked theories about how eukaryotic cells evolved. Although never proven, ESPs may play a part in developing intricate cytoskeletons and complicated cellular structures.

A collaboration between the working groups of Christa Schleper at the University of Vienna and Martin Pilhofer at ETH Zurich – shed light on the origin of the complex organisms on Earth. Scientists have successfully cultivated a special archaeon and characterized it more precisely using microscopic methods. This Asgard archaea member demonstrates distinct cellular traits and might serve as an evolutionary “missing link” to more complex living forms like mammals and plants.

Most current theories presuppose that archaea and bacteria were crucial in the development of eukaryotes. It is thought that a close relationship between archaea and bacteria about two billion years ago led to the evolution of the first eukaryotic primordial cell. On 2015, the so-called “Asgard archaea,” which in the tree of life represent the closest ancestors of eukaryotes, were found through genomic analyses of deep-sea environmental samples. A Japanese study revealed the first pictures of Asgard cells in 2020 using enrichment cultures.

We live in an amazing age. New medicines, therapies, and treatments come out every day that help people live happier, more meaningful lives. Things are moving so fast it can be hard to keep up. That’s why I follow futurists like Ray Kurzweil who sift through all these innovations. They make it easier for regular people like me to live happier and healthier lives.


Learn from Ray Kurzweil how to easily improve your health and increase your productive lifespan so you can be happier and more fulfilled.

We may have parted ways with our primate cousins millions of years ago, but a new study shows just how human beings continue to evolve in ways we never imagined.

Researchers from Biomedical Sciences Research Center “Alexander Fleming” (BSRC Flemming) in Greece and Trinity College Dublin, Ireland, have identified 155 genes in our genome that emerged from small, non-coding sections of DNA. Many appear to play a critical role in our biology, revealing how completely novel genes can rapidly evolve to become essential.

New genes typically arise through well known mechanisms like duplication events, where our genetic machinery accidently produces copies of pre-existing genes that can end up suiting new functions over time.

For those curious about the Ukraine war which is involving over 75 countries (and the number keeps growing!):

Ukraine has received 41 powerful generators intended for health facilities from the Republic of Kazakhstan. Kazakhstan was occupied by Russian troops earlier this year so this is a big deal. Russia also does all their space launches from Kazakhstan.


The relevant statement was made by the Ukrainian Health Ministry on Facebook, an Ukrinform correspondent reports.

“We have received a wonderful Christmas gift from the people of Kazakhstan: 41 powerful generators for our health facilities,” the report states.

Transplanting a patient’s own hematopoietic stem cells may defer the progression of disability longer in patients with secondary progressive multiple sclerosis (SPMS) than treatment with other anti-inflammatory disease-modifying therapies (DMT), reports a study published in the journal Neurology “Hematopoietic Stem Cell Transplantation in People With Active Secondary Progressive Multiple Sclerosis”.

“Hematopoietic stem cell transplants have been previously found to delay disability in people with relapsing-remitting MS, but less is known about whether such transplants could help delay disability during the more advanced stage of the disease,” said Matilde Inglese, MD, PhD, professor of neurology at the University of Genoa in Italy and senior author of the study. “Our results are encouraging because while current treatments for SPMS have modest or small benefits, our study found stem cell transplants may not only delay disability longer than many other MS medications, they may also provide a slight improvement in symptoms.”

Patients initially diagnosed with relapsing-remitting MS, where periods of active flare-up of symptoms alternate spans of remission, eventually develop SPMS where the disease worsens gradually but steadily. The exact mechanisms leading to increased neurodegeneration in SPMS are unclear, but evidence suggests a major role of innate and adaptive immune mechanisms that drive inflammation in the brain parenchyma, the leptomeninges, and the cerebrospinal fluid.